Probabilistic fuzzy logic system: A tool to process stochastic and imprecise information

In this paper, a probabilistic fuzzy logic system (PFLS) is discussed for modeling the stochastic and imprecise information. The PFLS uses a 3-dimensional probabilistic fuzzy set to capture the imprecise stochastic information. A unique 3-dimensional probabilistic fuzzy logic is designed to perform rule inference under such imprecise and stochastic environment. When the PFLS and neural networks are integrated in a unified framework, it can further adapt to time varying dynamics so as to improve its modeling performance. The paper briefly reviews this unique development and potential power of probabilistic fuzzy logic system.

[1]  Sayan Mukherjee,et al.  Support Vector Method for Multivariate Density Estimation , 1999, NIPS.

[2]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[3]  Daniel W. C. Ho,et al.  A note on the robust stability of uncertain stochastic fuzzy systems with time-delays , 2004, IEEE Trans. Syst. Man Cybern. Part A.

[4]  S. Mitter Filtering and stochastic control: a historical perspective , 1996 .

[5]  Richard M. Leahy,et al.  Statistical modeling and reconstruction of randoms pre-corrected PET data , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[6]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[7]  Thanh Nguyen,et al.  The Optimal Rule Structure for Fuzzy Systems in Function Approximation by Hybrid Approach in Learning Process , 2008, 2008 International Conference on Computational Intelligence for Modelling Control & Automation.

[8]  Chuen-Tsai Sun,et al.  Neuro-fuzzy modeling and control , 1995, Proc. IEEE.

[9]  V. Kratschmer Constraints on belief functions imposed by fuzzy random variables: Some technical remarks on Romer-Kandel. , 1998, IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society.

[10]  Chi-Hsu Wang,et al.  Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN) , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[11]  Ana Colubi,et al.  Simulation of random fuzzy variables: an empirical approach to statistical/probabilistic studies with fuzzy experimental data , 2002, IEEE Trans. Fuzzy Syst..

[12]  Zbigniew Michalewicz,et al.  Case study: an intelligent decision support system , 2005, IEEE Intelligent Systems.

[13]  Ronald K. Pearson,et al.  Outliers in process modeling and identification , 2002, IEEE Trans. Control. Syst. Technol..

[14]  S.-H. Lin,et al.  Synergistic modeling and applications of hierarchical fuzzy neural networks , 1999 .

[15]  Richard M. Leahy,et al.  Statistical Modeling and Reconstruction of Randoms Precorrected PET Data , 2006, IEEE Transactions on Medical Imaging.

[16]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice , 1993 .

[17]  Kazuo Tanaka,et al.  Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach , 2008 .

[18]  Abraham Kandel,et al.  Constraints on belief functions imposed by fuzzy random variables , 1995, IEEE Trans. Syst. Man Cybern..

[19]  Ching-Chang Wong,et al.  A hybrid clustering and gradient descent approach for fuzzy modeling , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[20]  Feng Lin,et al.  A Fuzzy Discrete Event System Approach to Determining Optimal HIV/AIDS Treatment Regimens , 2006, IEEE Transactions on Information Technology in Biomedicine.

[21]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[22]  Ronald R. Yager Cumulative distribution functions from Dempster-Shafer belief structures , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[23]  Bore-Kuen Lee,et al.  Optimal tracking design for stochastic fuzzy systems , 2003, IEEE Trans. Fuzzy Syst..

[24]  Gert de Cooman,et al.  A random set description of a possibility measure and its natural extension , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[25]  I. Burhan Türksen,et al.  Enhanced Fuzzy System Models With Improved Fuzzy Clustering Algorithm , 2008, IEEE Transactions on Fuzzy Systems.

[26]  N. H. C. Yung,et al.  An intelligent mobile vehicle navigator based on fuzzy logic and reinforcement learning , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[27]  Jason Weston,et al.  Density Estimation using Support Vector Machines , 1998 .

[28]  Zhi Liu,et al.  A probabilistic fuzzy logic system for modeling and control , 2005, IEEE Transactions on Fuzzy Systems.

[29]  V. Vapnik,et al.  Multivariate Density Estimation: an SVM Approach , 1999 .

[30]  Jay H. Lee,et al.  Two‐step procedure for data‐based modeling for inferential control applications , 2000 .

[31]  Martin Brown,et al.  Neurofuzzy adaptive modelling and control , 1994 .

[32]  P. Dorato,et al.  A historical review of robust control , 1987, IEEE Control Systems Magazine.

[33]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[34]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[35]  Kazuo Tanaka,et al.  Fuzzy control systems design and analysis , 2001 .

[36]  Zhi Liu,et al.  A Probabilistic Neural-Fuzzy Learning System for Stochastic Modeling , 2008, IEEE Transactions on Fuzzy Systems.

[37]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .