Mathematical Relation between Extended Connectivity and Eigenvector Coefficients

Formulas are derived for the limit distribution of weights of vertices in a graph as obtained from extended connectivities. A fundamental difference between bipartite and nonbipartite graphs is seen: For the latter the eventual distribution coincides with the one resulting from the coefficients in the principal eigenvector. For the former, in contrast, the last eigenvector also has to be taken into account, and there is no single limit distribution. This is the reason why in some bipartite graphs the ranks derived from extended connectivities switch indefinitely for certain atoms.