Electrochemical control of the photocurrent direction in intercalated DNA/CdS nanoparticle systems.

[1]  A. P. De Silva,et al.  Molecular computation: Molecular logic gets loaded , 2005 .

[2]  Eugen Katz,et al.  Integrierte Hybridsysteme aus Nanopartikeln und Biomolekülen: Synthese, Eigenschaften und Anwendungen , 2004 .

[3]  Itamar Willner,et al.  Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. , 2004, Angewandte Chemie.

[4]  M. Kovalenko,et al.  Photoinduced Electron Transfer between CdS and CdTe Nanoparticles in Colloidal Solutions , 2004 .

[5]  Yukio Imanishi,et al.  A Molecular Photodiode System That Can Switch Photocurrent Direction , 2004, Science.

[6]  Itamar Willner,et al.  Electrochemical Assembly of a CdS Semiconductor Nanoparticle Monolayer on Surfaces: Structural Properties and Photoelectrochemical Applications , 2004 .

[7]  Gianaurelio Cuniberti,et al.  Charge transport in DNA-based devices , 2004, cond-mat/0403640.

[8]  A. P. de Silva,et al.  Molecular-scale logic gates. , 2004, Chemistry.

[9]  J. Barton,et al.  Direct chemical evidence for charge transfer between photoexcited 2-aminopurine and guanine in duplex DNA. , 2004, Journal of the American Chemical Society.

[10]  S. Yamada,et al.  Bi-directional photocurrent generation dependent on the wavelength of irradiation of a mixed monolayer assembly , 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[11]  T. G. Drummond,et al.  Electrochemical DNA sensors , 2003, Nature Biotechnology.

[12]  Darko Stefanovic,et al.  A deoxyribozyme-based molecular automaton , 2003, Nature Biotechnology.

[13]  Larry A. Nagahara,et al.  A Bond-Fluctuation Mechanism for Stochastic Switching in Wired Molecules , 2003, Science.

[14]  Vincenzo Balzani,et al.  Molecular logic circuits. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[15]  F. Raymo Digital processing and communication with molecular switches , 2002 .

[16]  C. Niemeyer,et al.  Nanopartikel, Proteine und Nucleinsäuren: Die Biotechnologie begegnet den Materialwissenschaften , 2001 .

[17]  C. Niemeyer REVIEW Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science , 2022 .

[18]  Itamar Willner,et al.  Photoelectrochemistry with Controlled DNA-Cross-Linked CdS Nanoparticle Arrays This research is supported by The U.S.-Israel Binational Science Foundation. The Max Planck Research Award for International Cooperation (I.W.) is gratefully acknowledged. , 2001, Angewandte Chemie.

[19]  E Artacho,et al.  Absence of dc-conductivity in lambda-DNA. , 2000, Physical review letters.

[20]  David J. Schiffrin,et al.  A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups , 2000, Nature.

[21]  A. Steel,et al.  Electrochemical quantitation of DNA immobilized on gold. , 1998, Analytical chemistry.

[22]  Itamar Willner,et al.  Photoswitchable Biomaterials: En Route to Optobioelectronic Systems , 1997 .

[23]  Shai Rubin,et al.  Control of the Structure and Functions of Biomaterials by Light , 1996 .

[24]  Itamar Willner,et al.  Steuerung der Struktur und Funktion von Biomakromolekülen durch Licht , 1996 .

[25]  Janos H. Fendler,et al.  Fluorescence activation and surface-state reactions of size-quantized cadmium sulfide particles in Langmuir-Blodgett films , 1994 .