Creep ruptures in heterogeneous materials.

We present creep experiments on fiber composite materials with different controlled heterogeneity. All samples exhibit a power-law relaxation of the strain rate in the primary creep regime (Andrade's law) followed by a power-law acceleration up to rupture. We discover that the rupture time is proportional to the duration of the primary creep regime, showing the interplay between the two regimes and offering a method of rupture prediction. These experimental results are rationalized by a mean-field model of representative elements with nonlinear viscoelastic rheology and with a large heterogeneity of strengths.