Dynamics of Tree-Type Robotic Systems
暂无分享,去创建一个
[1] G. Stewart. Introduction to matrix computations , 1973 .
[2] R. Featherstone. The Calculation of Robot Dynamics Using Articulated-Body Inertias , 1983 .
[3] S. Saha,et al. Modular framework for dynamic modeling and analyses of legged robots , 2012 .
[4] D. T. Greenwood. Principles of dynamics , 1965 .
[5] Subir Kumar Saha,et al. A decomposition of the manipulator inertia matrix , 1997, IEEE Trans. Robotics Autom..
[6] Roy Featherstone,et al. Efficient Factorization of the Joint-Space Inertia Matrix for Branched Kinematic Trees , 2005, Int. J. Robotics Res..
[7] M. Hiller,et al. A comparative study of recursive methods , 1995 .
[8] Subir Kumar Saha,et al. Analytical Expression for the Inverted Inertia Matrix of Serial Robots , 1999, Int. J. Robotics Res..
[9] Abhinandan Jain,et al. A Spatial Operator Algebra for Manipulator Modeling and Control , 1989, Proceedings, 1989 International Conference on Robotics and Automation.
[10] David E. Orin,et al. Alternate Formulations for the Manipulator Inertia Matrix , 1991, Int. J. Robotics Res..
[11] Werner Schiehlen,et al. RECURSIVE KINEMATICS AND DYNAMICS FOR PARALLEL STRUCTURED CLOSED-LOOP MULTIBODY SYSTEMS* , 2001 .
[12] S. Saha. Dynamics of Serial Multibody Systems Using the Decoupled Natural Orthogonal Complement Matrices , 1999 .
[13] Jorge Angeles,et al. Dynamic Simulation of n-Axis Serial Robotic Manipulators Using a Natural Orthogonal Complement , 1988, Int. J. Robotics Res..