Tuning of optical properties by atomic layer deposition

A combination of deposition strategies was applied in order to synthesize Au nanoparticle chains embedded in helical Al2O3 nanotubes (“nanopeapods”). Carbon nanocoils were grown by chemical vapour deposition and coated with Au by sputtering with a subsequent Al2O3 coating by atomic layer deposition. Rayleigh instabilities were made use of in order to fragment the Au coating into nanoparticles with a sharp size distribution. The pitch of the nanocoils arising from three-dimensional periodical topography of the carbon nanocoil templates induced a regular spacing between the nanoparticles. The nanoparticle chains show a strong plasmonic resonance behaviour visible as clear polarization contrast at red wavelengths, which is absent in the blue upon excitation with a confocal laser scanning microscope. The fabricated nanopeapods are suggested promising candidates for highly efficient, ultrathin waveguides.

[1]  C. Trautmann,et al.  Fragmentation of nanowires driven by Rayleigh instability , 2004 .

[2]  C. Keating,et al.  Batch preparation of linear Au and Ag nanoparticle chains via wet chemistry. , 2005, Nano letters.

[3]  A. Alivisatos,et al.  Collective behaviour in two-dimensional cobalt nanoparticle assemblies observed by magnetic force microscopy , 2004, Nature materials.

[4]  Francesco Stellacci,et al.  Divalent Metal Nanoparticles , 2007, Science.

[5]  Carl V. Thompson,et al.  Capillary instabilities in thin, continuous films , 1992 .

[6]  Younan Xia,et al.  Synthesis and Self-Assembly of Au@SiO2 Core−Shell Colloids , 2002 .

[7]  Harry A. Atwater,et al.  Optical pulse propagation in metal nanoparticle chain waveguides , 2003 .

[8]  Federico Capasso,et al.  Surface plasmon resonances of free-standing gold nanowires fabricated by nanoskiving. , 2006, Angewandte Chemie.

[9]  L. Rayleigh On The Instability Of Jets , 1878 .

[10]  Zhiyong Tang,et al.  One‐Dimensional Assemblies of Nanoparticles: Preparation, Properties, and Promise , 2005 .

[11]  F. Aussenegg,et al.  Optical dichroism of lithographically designed silver nanoparticle films. , 1996, Optics letters.

[12]  S. Kawata,et al.  Subwavelength colour imaging with a metallic nanolens , 2008 .

[13]  Qi-Huo Wei,et al.  Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains , 2004 .

[14]  Jun Liu,et al.  Assembly and Transport of Nanocrystal CdSe Quantum Dot Nanocomposites Using Microtubules and Kinesin Motor Proteins , 2004 .

[15]  Harry A. Atwater,et al.  Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit , 2000 .

[16]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.

[17]  Jin Yu,et al.  Size-dependent thermal instability and melting behavior of Sn nanowires , 2007 .

[18]  C. Thompson,et al.  Solid-state dewetting for ordered arrays of crystallographically oriented metal particles , 2005 .

[19]  Zhong Lin Wang,et al.  Shell-isolated nanoparticle-enhanced Raman spectroscopy , 2010, Nature.

[20]  Peidong Yang,et al.  Tunable plasmonic lattices of silver nanocrystals. , 2007, Nature nanotechnology.

[21]  Zhikun Zhang,et al.  Helical carbon nanofibers with a symmetric growth mode , 2004 .

[22]  Qianwang Chen,et al.  Synthesis and One-Dimensional Self-Assembly of Acicular Nickel Nanocrystallites under Magnetic Fields , 2004 .

[23]  Chad A Mirkin,et al.  Control of nanoparticle assembly by using DNA-modified diatom templates. , 2004, Angewandte Chemie.

[24]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[25]  R. Ewing,et al.  Patterning Metallic Nanostructures by Ion-Beam-Induced Dewetting and Rayleigh Instability , 2006 .

[26]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[27]  Motoichi Ohtsu,et al.  Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion , 2005 .

[28]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[29]  S. Kawata,et al.  Pressure-assisted tip-enhanced Raman imaging at a resolution of a few nanometres , 2009 .

[30]  George M Whitesides,et al.  Three-dimensional self-assembly of metallic rods with submicron diameters using magnetic interactions. , 2003, Journal of the American Chemical Society.

[31]  Lifeng Liu,et al.  Tailor-made inorganic nanopeapods: structural design of linear noble metal nanoparticle chains. , 2008, Angewandte Chemie.

[32]  A. Ribbe,et al.  Self-assembly of cobalt nanoparticle rings. , 2002, Journal of the American Chemical Society.

[33]  S. Kawata,et al.  Plasmonics for near-field nano-imaging and superlensing , 2009 .

[34]  K. Kern,et al.  Direct near-field optical imaging of higher order plasmonic resonances. , 2008, Nano letters.

[35]  Jillian M. Buriak,et al.  Assembly of aligned linear metallic patterns on silicon , 2007, Nature Nanotechnology.

[36]  T. Russell,et al.  Instabilities in nanoporous media. , 2007, Nano letters.

[37]  B. Erné,et al.  Direct imaging of zero-field dipolar structures in colloidal dispersions of synthetic magnetite. , 2004, Journal of the American Chemical Society.

[38]  P. Mulvaney,et al.  Charge-induced Rayleigh instabilities in small gold rods. , 2007, Nano letters.

[39]  U. Gösele,et al.  Rayleigh-instability-induced metal nanoparticle chains encapsulated in nanotubes produced by atomic layer deposition. , 2008, Nano letters.

[40]  Shui-Tong Lee,et al.  Bulk-quantity Si nanosphere chains prepared from semi-infinite length Si nanowires , 2001 .