The Complexity of Bottleneck Labeled Graph Problems

We study bottleneck labeled optimization problems arising in the context of graph theory. This long-established model partitions the set of edges into classes, each of which is identified by a unique color. The generic objective is to construct a subgraph of prescribed structure (such as an s-t path, a spanning tree, or a perfect matching) while trying to minimize the maximum (or, alternatively, maximize the minimum) number of edges picked from any given color.

[1]  Oded Berman,et al.  Categorized bottleneck-minisum path problems on networks , 1994, Oper. Res. Lett..

[2]  Daniel Vanderpooten,et al.  Approximation Complexity of min-max (Regret) Versions of Shortest Path, Spanning Tree, and Knapsack , 2005, ESA.

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  Abraham P. Punnen,et al.  On: Travelling salesman problem under categorization: Operations Research Letters 12 (1992) 89-95 , 1993, Oper. Res. Lett..

[5]  Xueliang Li,et al.  Spanning trees with many or few colors in edge-colored graphs , 1997, Discuss. Math. Graph Theory.

[6]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[7]  Daniel Vanderpooten,et al.  Pseudo-polynomial algorithms for min-max and min-max regret problems , 2005 .

[8]  Alon Itai,et al.  Some Matching Problems for Bipartite Graphs , 1978, JACM.

[9]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[10]  Maxim Sviridenko,et al.  Pipage Rounding: A New Method of Constructing Algorithms with Proven Performance Guarantee , 2004, J. Comb. Optim..

[11]  Marek Karpinski,et al.  Approximation Hardness of Short Symmetric Instances of MAX-3SAT , 2003, Electron. Colloquium Comput. Complex..

[12]  Refael Hassin,et al.  Approximation algorithms and hardness results for labeled connectivity problems , 2006, J. Comb. Optim..

[13]  Gerhard J. Woeginger,et al.  Paths and cycles in colored graphs , 2001, Australas. J Comb..

[14]  Alon Itai,et al.  Two-Commodity Flow , 1978, JACM.

[15]  Refael Hassin,et al.  Approximation algorithms and hardness results for labeled connectivity problems , 2007, J. Comb. Optim..

[16]  Jacques Teghem,et al.  Multiple Criteria Optimization, State of the Art. Annotated Bibliographic Surveys, M. Ehrgott, X. Gandibleux (Eds.). Kluwer International Series (Operations Research and Management Science), Boston, Dordrecht, London (2002), (496pp.), ISBN: 1-4020-7128-0 , 2005 .

[17]  Katta G. Murty,et al.  Matchings in colored bipartite networks , 2002, Discret. Appl. Math..

[18]  Abraham P. Punnen On bottleneck assignment problems under categorization , 2004, Comput. Oper. Res..

[19]  Ruay-Shiung Chang,et al.  The Minimum Labeling Spanning Trees , 1997, Inf. Process. Lett..

[20]  Mohit Singh,et al.  How to pay, come what may: approximation algorithms for demand-robust covering problems , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[21]  William R. Pulleyblank,et al.  Exact arborescences, matchings and cycles , 1987, Discret. Appl. Math..

[22]  Daniel Vanderpooten,et al.  Complexity of the Min-Max (Regret) Versions of Cut Problems , 2005, ISAAC.

[23]  Jérôme Monnot The labeled perfect matching in bipartite graphs , 2005, Inf. Process. Lett..

[24]  Abraham P. Punnen,et al.  Minimum Perfect Bipartite Matchings and Spanning Trees under Categorization , 1992, Discret. Appl. Math..

[25]  E. L. Ulungu,et al.  Multi‐objective combinatorial optimization problems: A survey , 1994 .

[26]  Abraham P. Punnen Traveling salesman problem under categorization , 1992, Oper. Res. Lett..

[27]  David R. Karger,et al.  On approximating the longest path in a graph , 1997, Algorithmica.

[28]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..

[29]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[30]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[31]  Gerhard J. Woeginger,et al.  Local search for the minimum label spanning tree problem with bounded color classes , 2003, Oper. Res. Lett..

[32]  Siam J. CoMPtrr,et al.  FINDING A MAXIMUM CUT OF A PLANAR GRAPH IN POLYNOMIAL TIME * , 2022 .

[33]  Mihalis Yannakakis,et al.  On the approximability of trade-offs and optimal access of Web sources , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[34]  F. Hadlock,et al.  Finding a Maximum Cut of a Planar Graph in Polynomial Time , 1975, SIAM J. Comput..

[35]  A. V. Karzanov Maximum matching of given weight in complete and complete bipartite graphs , 1987 .

[36]  D. J. White,et al.  A Bibliography on the Applications of Mathematical Programming Multiple-objective Methods , 1990 .