Rogue-wave interaction for a higher-order nonlinear Schrödinger–Maxwell–Bloch system in the optical-fiber communication

In this paper, a higher-order nonlinear Schrödinger–Maxwell–Bloch system in the optical-fiber communication is investigated. By virtue of the generalized Darboux transformation, higher-order rogue-wave solutions are derived. Wave propagation and interaction are analyzed: (1) The frequency affects the number of troughs, type and propagation direction of rogue waves for the polarization of the resonant medium and extant population inversion, while the frequency has no influence on the module for the complex envelope of the field. (2) The frequency affects the type of the higher-order rogue-wave interaction. Second- and third-order rogue-wave head-on interactions are presented, with the propagation direction of each rogue wave unvaried after the interaction.

[1]  Bo Tian,et al.  Dynamics of an integrable Kadomtsev-Petviashvili-based system , 2014, Appl. Math. Lett..

[2]  Bo Tian,et al.  Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers [rapid communication] , 2005 .

[3]  N. Hoffmann,et al.  Rogue wave observation in a water wave tank. , 2011, Physical review letters.

[4]  Hai-Ping Zhu,et al.  Combined Akhmediev breather and Kuznetsov–Ma solitons in a two-dimensional graded-index waveguide , 2014 .

[5]  B. Tian,et al.  Double-Wronskian solitons and rogue waves for the inhomogeneous nonlinear Schrödinger equation in an inhomogeneous plasma , 2014 .

[6]  C. Christov,et al.  Physical dynamics of quasi-particles in nonlinear wave equations , 2006, nlin/0612005.

[7]  Bo Tian,et al.  Cylindrical nebulons, symbolic computation and Bäcklund transformation for the cosmic dust acoustic waves , 2005 .

[8]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[9]  Chao-Qing Dai,et al.  Superposed Akhmediev breather of the (3+1)-dimensional generalized nonlinear Schrödinger equation with external potentials , 2014 .

[10]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[11]  Bo Tian,et al.  Dynamic behavior of the quantum Zakharov-Kuznetsov equations in dense quantum magnetoplasmas , 2014 .

[12]  N. Akhmediev,et al.  On the solution of multicomponent nonlinear Schrödinger equations , 2004 .

[13]  Long Xue,et al.  Rogue waves for the generalized nonlinear Schrödinger-Maxwell-Bloch system in optical-fiber communication , 2015, Appl. Math. Lett..

[14]  M. S. Mani Rajan,et al.  Nonlinear tunneling of nonautonomous optical solitons in combined nonlinear Schrödinger and Maxwell–Bloch systems , 2012 .

[15]  Bo Tian,et al.  Reply to: “Comment on: ‘Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation’ ” [Phys. Lett. A 361 (2007) 520] , 2007 .

[16]  G. Lamb Elements of soliton theory , 1980 .

[17]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[18]  N. Akhmediev,et al.  Exact first-order solutions of the nonlinear Schrödinger equation , 1987 .

[19]  L. Kavitha,et al.  SOLITON SPIN EXCITATIONS IN AN ANISOTROPIC HEISENBERG FERROMAGNET WITH OCTUPOLE-DIPOLE INTERACTION , 1999 .

[20]  B. R. Mollow Absorption and Emission Line-Shape Functions for Driven Atoms , 1972 .

[21]  B. Tian,et al.  Soliton Interactions for the Three‐Coupled Discrete Nonlinear Schrödinger Equations in the Alpha Helical Proteins , 2014 .

[22]  Chao-Qing Dai,et al.  Superposed Kuznetsov-Ma solitons in a two-dimensional graded-index grating waveguide , 2013 .

[23]  Guoquan Zhou,et al.  Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials , 2014 .

[24]  Pan Wang,et al.  Integrability and soliton-like solutions for the coupled higher-order nonlinear Schrödinger equations with variable coefficients in inhomogeneous optical fibers , 2014, Commun. Nonlinear Sci. Numer. Simul..

[25]  Q. P. Liu,et al.  Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Yufeng Wang,et al.  Soliton dynamics of a discrete integrable Ablowitz-Ladik equation for some electrical and optical systems , 2014, Appl. Math. Lett..

[27]  J. Soto-Crespo,et al.  Rogue waves and rational solutions of the nonlinear Schrödinger equation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Adrian Ankiewicz,et al.  Rogue waves and rational solutions of the Hirota equation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Hui-Qin Hao,et al.  Modulation Instability, Breathers, and Bound Solitons in an Erbium-Doped Fiber System with Higher-Order Effects , 2014 .

[30]  P. Clarkson,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .

[31]  S. L. Palacios,et al.  Black optical solitons for media with parabolic nonlinearity law in the presence of fourth order dispersion , 2000 .

[32]  Hai-Ping Zhu,et al.  Nonlinear tunneling for controllable rogue waves in two dimensional graded-index waveguides , 2013 .

[33]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .

[34]  B. Tian,et al.  Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas , 2007 .