Gravitational sensing with weak value based optical sensors

[1]  M. Turner Development of new technologies for precision torsion-balance experiments , 2018 .

[2]  A. Jordan,et al.  Noise suppression in inverse weak value-based phase detection , 2017, 1707.03122.

[3]  Aephraim M. Steinberg,et al.  Weak-value amplification and optimal parameter estimation in the presence of correlated noise , 2017, 1703.01496.

[4]  G. Mueller,et al.  A new torsion pendulum for gravitational reference sensor technology development. , 2017, The Review of scientific instruments.

[5]  Todd A. Brun,et al.  Protecting weak measurements against systematic errors , 2016, 1605.09040.

[6]  A. Jordan,et al.  Power-recycled weak-value-based metrology. , 2015, Physical Review Letters.

[7]  M. Kasevich,et al.  Testing Gravity with Cold-Atom Interferometers , 2014, 1412.3210.

[8]  John C. Howell,et al.  Experimentally quantifying the advantages of weak-values-based metrology , 2014, 2015 Conference on Lasers and Electro-Optics (CLEO).

[9]  A. Jordan,et al.  Heisenberg scaling with weak measurement: a quantum state discrimination point of view , 2014, 1409.3488.

[10]  F. Sorrentino,et al.  Precision measurement of the Newtonian gravitational constant using cold atoms , 2014, Nature.

[11]  John C. Howell,et al.  Technical advantages for weak value amplification: When less is more , 2013, 1309.5011.

[12]  George C. Knee,et al.  When amplification with weak values fails to suppress technical noise , 2013, 1306.6321.

[13]  A. Jordan,et al.  Strengthening weak-value amplification with recycled photons , 2013, 1305.4520.

[14]  Aephraim M. Steinberg,et al.  Amplifying single-photon nonlinearity using weak measurements. , 2010, Physical review letters.

[15]  O. Andersen,et al.  Using GOCE to estimate the mean North Atlantic circulation (Invited) , 2010 .

[16]  J. Faller,et al.  Simple pendulum determination of the gravitational constant. , 2010, Physical review letters.

[17]  Aephraim M. Steinberg Quantum measurement: A light touch , 2010, Nature.

[18]  F. Sorrentino,et al.  Sensitive gravity-gradiometry with atom interferometry: progress towards an improved determination of the gravitational constant , 2010, 1002.3549.

[19]  David J. Starling,et al.  Continuous phase amplification with a Sagnac interferometer , 2009, 0912.2357.

[20]  C. Simon,et al.  Measuring small longitudinal phase shifts: weak measurements or standard interferometry? , 2009, Physical review letters.

[21]  杉本 剛 Philosophiae Naturalis Principia Mathematica邦訳書の底本に関するノート , 2010 .

[22]  David J. Starling,et al.  Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values , 2009, 0910.2410.

[23]  David J. Starling,et al.  Ultrasensitive beam deflection measurement via interferometric weak value amplification. , 2009, Physical review letters.

[24]  Onur Hosten,et al.  Observation of the Spin Hall Effect of Light via Weak Measurements , 2008, Science.

[25]  G. Lamporesi,et al.  Determination of the newtonian gravitational constant using atom interferometry. , 2008, Physical review letters.

[26]  M. Kasevich,et al.  Testing general relativity with atom interferometry. , 2006, Physical review letters.

[27]  Victor Zlotnicki,et al.  Time‐variable gravity from GRACE: First results , 2004 .

[28]  M. Fitzgerald,et al.  New measurements of G using the measurement standards laboratory torsion balance. , 2003, Physical review letters.

[29]  M. Kasevich,et al.  Sensitive absolute-gravity gradiometry using atom interferometry , 2001, physics/0105088.

[30]  A Picard,et al.  A new determination of G using two methods. , 2001, Physical review letters.

[31]  D. Difrancesco,et al.  A comparison of gravimetric techniques for measuring subsurface void signals , 2001 .

[32]  E. H. V. Leeuwen BHP develops airborne gravity gradiometer for mineral exploration , 2000 .

[33]  J. Gundlach,et al.  Measurement of Newton's constant using a torsion balance with angular acceleration feedback. , 2000, Physical review letters.

[34]  A. Peters,et al.  Measurement of gravitational acceleration by dropping atoms , 1999, Nature.

[35]  U. Kleinevoss,et al.  Absolute measurement of the Newtonian force and a determination of G , 1999 .

[36]  A. Peters,et al.  High-precision gravity measurements using atom interferometry , 1998 .

[37]  R. O. Hansen,et al.  The rise and fall of early oil field technology: The torsion balance gradiometer , 1998 .

[38]  G. Luther,et al.  PRELIMINARY RESULTS OF A DETERMINATION OF THE NEWTONIAN CONSTANT OF GRAVITATION : A TEST OF THE KURODA HYPOTHESIS , 1997 .

[39]  O. V. Karagioz,et al.  Measurement of the gravitational constant with a torsion balance , 1996 .

[40]  Kuroda Does the time-of-swing method give a correct value of the newtonian gravitational constant? , 1995, Physical review letters.

[41]  Ritchie,et al.  Realization of a measurement of a "weak value" , 1991, Physical review letters.

[42]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.

[43]  G. Luther,et al.  Redetermination of the Newtonian Gravitational Constant G , 1981 .

[44]  W. Prothero,et al.  The superconducting gravimeter , 1968 .