Modelling surface effects in nano wire optoelectronic devices

Recent research on optoelectronic devices focuses on nano structuring which is expected to improve the performance and reduce the production costs of light emitting diodes for lighting purposes and solar cells, for instance. Structuring on the sub-micrometer scale increases the surface with respect to the active volume so that surface effects become crucial for the device performance. In this work we demonstrate the computational modelling of nano structured optoelectronic devices to complement the experiment. The implementation of the simulation model considers surface effects in these devices using a true area box method discretization. The derived surface models are applied on the self-consistent simulation of nano wire quantum disk light emitting diodes. By the computational study we demonstrate that the surface physical effects are critical for the performance of nano-structured optoelectronic devices and that surface recombination can lead to a low efficiency.

[1]  Umesh K. Mishra,et al.  Surface Potential at as‐Grown GaN(0001) MBE Layers , 2002 .

[2]  K. Streubel,et al.  Status of high efficiency and high power ThinGaN®‐LED development , 2009 .

[3]  G. A. Baraff,et al.  SEMICLASSICAL DESCRIPTION OF ELECTRON TRANSPORT IN SEMICONDUCTOR QUANTUM-WELL DEVICES , 1997 .

[4]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[5]  Pallab Bhattacharya,et al.  InGaN/GaN disk-in-nanowire white light emitting diodes on (001) silicon , 2011 .

[6]  Shuqing Yu,et al.  Analysis of surface recombination in nanowire array solar cells , 2012 .

[7]  T. Kerkhoven On the Scharfetter-Gummel Box-Method , 1993 .

[8]  Shun Lien Chuang,et al.  CRYSTAL-ORIENTATION EFFECTS ON THE PIEZOELECTRIC FIELD AND ELECTRONIC PROPERTIES OF STRAINED WURTZITE SEMICONDUCTORS , 1999 .

[9]  W. Fichtner,et al.  Numerical methods for semiconductor device simulation , 1983, IEEE Transactions on Electron Devices.

[10]  Oyvind Hjelle,et al.  Triangulations and applications , 2006 .

[11]  W. Kohn,et al.  Motion of Electrons and Holes in Perturbed Periodic Fields , 1955 .

[12]  Shun Lien Chuang,et al.  k.p method for strained wurtzite semiconductors , 1996 .

[13]  R. K. Smith,et al.  Some upwinding techniques for finite element approximations of convection-diffusion equations , 1990 .

[14]  Bernd Witzigmann,et al.  Reliable k⋅p band structure calculation for nanostructures using finite elements , 2008 .

[15]  E. Forniés,et al.  Control of random texture of monocrystalline silicon cells by angle-resolved optical reflectance , 2005 .

[16]  Darling Defect-state occupation, Fermi-level pinning, and illumination effects on free semiconductor surfaces. , 1991, Physical review. B, Condensed matter.

[17]  Bernd Witzigmann,et al.  Computational study of multi-color InGaN/GaN nanowire LEDs with continuously varied indium composition , 2012, Other Conferences.

[18]  A. Waag,et al.  The nanorod approach: GaN NanoLEDs for solid state lighting , 2011 .

[19]  Randolph E. Bank,et al.  A new discretization scheme for the semiconductor current continuity equations , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[20]  Ying Zhang,et al.  High performance wire‐array silicon solar cells , 2011 .

[21]  Bernd Witzigmann,et al.  Unified simulation of transport and luminescence in optoelectronic nanostructures , 2008 .

[22]  A. T. Galick,et al.  ITERATION SCHEME FOR THE SOLUTION OF THE TWO-DIMENSIONAL SCHRODINGER-POISSON EQUATIONS IN QUANTUM STRUCTURES , 1997 .

[23]  Gilda Garretón A hybrid approach to 2D and 3D mesh generation for semiconductor device simulation , 1998 .

[24]  H. Morkoç,et al.  Transient photovoltage in GaN as measured by atomic force microscope tip , 2004 .

[25]  C.S. Rafferty,et al.  Iterative Methods in Semiconductor Device Simulation , 1985, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[26]  J. Wallentin,et al.  Nanowires With Promise for Photovoltaics , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  Steven M. George,et al.  Steady-state and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular beam epitaxy , 2010 .

[28]  B. Witzigmann,et al.  Simulation of InGaN quantum well LEDs with reduced internal polarization , 2012 .

[29]  Bernd Witzigmann,et al.  Computational study of an InGaN/GaN nanocolumn light-emitting diode , 2010 .