Computing local invariants of qubit systems
暂无分享,去创建一个
[1] A. Zeilinger,et al. Going Beyond Bell’s Theorem , 2007, 0712.0921.
[2] Eric M. Rains. Polynomial invariants of quantum codes , 2000, IEEE Trans. Inf. Theory.
[3] G. Mahler,et al. The maximal entangled three-particle state is unique , 1996 .
[4] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[5] Ronald L. Graham,et al. Concrete mathematics - a foundation for computer science (2. ed.) , 1994 .
[6] A. Peres,et al. Quantum code words contradict local realism , 1996, quant-ph/9611011.
[7] H. Weyl. The Classical Groups , 1939 .
[8] M. Kafatos. Bell's theorem, quantum theory and conceptions of the universe , 1989 .
[9] Michael Francis Atiyah,et al. Introduction to commutative algebra , 1969 .
[10] Bernd Sturmfels,et al. Algorithms in invariant theory , 1993, Texts and monographs in symbolic computation.
[11] Albert Einstein,et al. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .
[12] Valeri V.Dolotin. On Invariant Theory , 1995, alg-geom/9512011.
[13] Joe Harris,et al. Representation Theory: A First Course , 1991 .
[14] Schlienz,et al. Description of entanglement. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[15] M. Horodecki,et al. Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.
[16] Richard Brauer,et al. On Algebras Which are Connected with the Semisimple Continuous Groups , 1937 .