Generating Heat Maps of Popular Routes Online from Massive Mobile Sports Tracking Application Data in Milliseconds While Respecting Privacy

The breakthrough of GPS-equipped smartphones has enabled the collection of track data from human mobility on massive scales that can be used in route recommendation, urban planning and traffic management. In this work we present a fast map server that can generate and visualize heat maps of popular routes online from massive sports track data based on client preferences, e.g., running routes lasting less than an hour. The heat maps shown respect user privacy by not showing routes with less than a predefined number of different users, for instance five. The results are represented to the client using a dynamic tile layer. The current implementation uses data collected by the Sports Tracker mobile application with over 800,000 different tracks and 2.8 billion GPS data points. Stress tests indicate that the server can handle hundreds of simultaneous client requests in a single server configuration.

[1]  L. Hurni,et al.  Improved Density Estimation for the Visualisation of Literary Spaces , 2011 .

[2]  Jack Bresenham,et al.  Algorithm for computer control of a digital plotter , 1965, IBM Syst. J..

[3]  Forum Mpi MPI: A Message-Passing Interface , 1994 .

[4]  Daniel Gatica-Perez,et al.  Mining large-scale smartphone data for personality studies , 2013, Personal and Ubiquitous Computing.

[5]  Billy Charlton,et al.  A GPS-based bicycle route choice model for San Francisco, California , 2011 .

[6]  R. Sinnott Virtues of the Haversine , 1984 .

[7]  J. R. Smith,et al.  Coordinate systems and map projections , 1973 .

[8]  Emily Halili,et al.  Apache JMeter , 2008 .

[9]  Nicholas C. Coops,et al.  A review of earth observation using mobile personal communication devices , 2013, Comput. Geosci..

[10]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[11]  Jan Westerholm,et al.  Methods for deriving and calibrating privacy-preserving heat maps from mobile sports tracking application data , 2015 .

[12]  Danyel Fisher,et al.  Hotmap: Looking at Geographic Attention , 2007, IEEE Transactions on Visualization and Computer Graphics.

[13]  George Bosilca,et al.  Message Passing Interface , 2017, Encyclopedia of GIS.

[14]  Anind K. Dey,et al.  Location-Based Services for Mobile Telephony: a Study of Users' Privacy Concerns , 2003, INTERACT.

[15]  Trisalyn A. Nelson,et al.  A review of quantitative methods for movement data , 2013, Int. J. Geogr. Inf. Sci..

[16]  Fahui Wang,et al.  Urban land uses and traffic 'source-sink areas': Evidence from GPS-enabled taxi data in Shanghai , 2012 .

[17]  X. Gabaix Zipf's Law for Cities: An Explanation , 1999 .

[18]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[19]  Carlos Eduardo Scheidegger,et al.  Nanocubes for Real-Time Exploration of Spatiotemporal Datasets , 2013, IEEE Transactions on Visualization and Computer Graphics.

[20]  Heng Tao Shen,et al.  Discovering popular routes from trajectories , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[21]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[22]  Desa Coordinate systems and map projections , 2013 .

[23]  Alexandre M. Bayen,et al.  Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment , 2009 .

[24]  Laks V. S. Lakshmanan,et al.  Trajectory anonymity in publishing personal mobility data , 2011, SKDD.