Computational Science – ICCS 2020: 20th International Conference, Amsterdam, The Netherlands, June 3–5, 2020, Proceedings, Part IV

[1]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[2]  Amalia Luque,et al.  The impact of class imbalance in classification performance metrics based on the binary confusion matrix , 2019, Pattern Recognit..

[3]  Hans Rüdiger Kaufmann,et al.  Revisiting complexity theory to achieve strategic intelligence , 2018 .

[4]  S. Massini,et al.  Industry Cognitive Distance in Alliances and Firm Innovation Performance , 2018 .

[5]  Mihaela van der Schaar,et al.  GAIN: Missing Data Imputation using Generative Adversarial Nets , 2018, ICML.

[6]  T. Guo,et al.  The impact of focal firm’s centrality and knowledge governance on innovation performance , 2018 .

[7]  B. Laperche Enterprise Knowledge Capital , 2017 .

[8]  Jie Jiang,et al.  Entropy model of dissipative structure on corporate social responsibility , 2017 .

[9]  Fernando Nogueira,et al.  Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning , 2016, J. Mach. Learn. Res..

[10]  Mason A. Porter,et al.  Author Correction: The physics of spreading processes in multilayer networks , 2016, 1604.02021.

[11]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Honglak Lee,et al.  Learning Structured Output Representation using Deep Conditional Generative Models , 2015, NIPS.

[13]  Esther-Lydia Silva-Ramírez,et al.  Single imputation with multilayer perceptron and multiple imputation combining multilayer perceptron and k-nearest neighbours for monotone patterns , 2015, Appl. Soft Comput..

[14]  Michaela Trippl,et al.  Perspectives on Cluster Evolution: Critical Review and Future Research Issues , 2015 .

[15]  Huiling Chen,et al.  Imputing missing values in sensor networks using sparse data representations , 2014, MSWiM '14.

[16]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[17]  Francisco Herrera,et al.  Empowering difficult classes with a similarity-based aggregation in multi-class classification problems , 2014, Inf. Sci..

[18]  Mikel Galar,et al.  Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches , 2013, Knowl. Based Syst..

[19]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[20]  Stef van Buuren,et al.  Flexible Imputation of Missing Data , 2012 .

[21]  Yun Liu,et al.  A dissipative network model with neighboring activation , 2011 .

[22]  Francisco Herrera,et al.  An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes , 2011, Pattern Recognit..

[23]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[24]  Ross W. Gayler,et al.  A Comprehensive Survey of Data Mining-based Fraud Detection Research , 2010, ArXiv.

[25]  Ashish Anand,et al.  Multiclass cancer classification by support vector machines with class-wise optimized genes and probability estimates. , 2009, Journal of theoretical biology.

[26]  Chun-Gui Xu,et al.  A genetic programming-based approach to the classification of multiclass microarray datasets , 2009, Bioinform..

[27]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[28]  Karim Moustaghfir,et al.  The dynamics of knowledge assets and their link with firm performance , 2008 .

[29]  Stefano Brusoni,et al.  The Value and Costs of Modularity: A Problem‐Solving Perspective , 2007 .

[30]  Hui Han,et al.  Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning , 2005, ICIC.

[31]  Ryan M. Rifkin,et al.  In Defense of One-Vs-All Classification , 2004, J. Mach. Learn. Res..

[32]  Andy Neely,et al.  Intellectual capital - defining key performance indicators for organizational knowledge assets , 2004, Bus. Process. Manag. J..

[33]  Gustavo E. A. P. A. Batista,et al.  A study of the behavior of several methods for balancing machine learning training data , 2004, SKDD.

[34]  Bart Nooteboom,et al.  Empirical Tests of Optimal Cognitive Distance , 2004 .

[35]  Fiona E. Murray Innovation as co-evolution of scientific and technological networks: exploring tissue engineering , 2002 .

[36]  Johannes Fürnkranz,et al.  Round Robin Classification , 2002, J. Mach. Learn. Res..

[37]  Philip Cooke,et al.  From Technopoles to Regional Innovation Systems: The Evolution of Localised Technology Development Policy , 2001 .

[38]  Bart Nooteboom,et al.  Problems and Solutions in Knowledge Transfer , 2001 .

[39]  Yoram Singer,et al.  Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers , 2000, J. Mach. Learn. Res..

[40]  L. Leydesdorff,et al.  The dynamics of innovation: from National Systems and , 2000 .

[41]  Shu-Kun Lin,et al.  Modern Thermodynamics: From Heat Engines to Dissipative Structures , 1999, Entropy.

[42]  Salvatore J. Stolfo,et al.  Toward Scalable Learning with Non-Uniform Class and Cost Distributions: A Case Study in Credit Card Fraud Detection , 1998, KDD.

[43]  Robert Tibshirani,et al.  Classification by Pairwise Coupling , 1997, NIPS.

[44]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[45]  R. Jenner,et al.  Technological paradigms, innovative behavior and the formation of dissipative enterprises , 1991 .

[46]  Richard Leifer,et al.  Understanding Organizational Transformation Using a Dissipative Structure Model , 1989 .

[47]  Luigi Orsenigo,et al.  Innovation, Diversity and Diffusion: A Self-organisation Model , 1988 .

[48]  Charles Smith,et al.  A Dissipative Structure Model of Organization Transformation , 1985 .

[49]  Tim Kastelle,et al.  The evolution of innovation systems , 2014 .

[50]  Lawrence Mosley,et al.  A balanced approach to the multi-class imbalance problem , 2013 .

[51]  Jesús Alcalá-Fdez,et al.  KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework , 2011, J. Multiple Valued Log. Soft Comput..

[52]  Zhang Fusong,et al.  The Analysis of Dissipative Structure in the Technological Innovation System of Enterprises , 2009 .

[53]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[54]  Wolfgang Hofkirchner,et al.  Self-organization, knowledge and responsibility , 2005 .

[55]  Tom De Wolf,et al.  Emergence Versus Self-Organisation: Different Concepts but Promising When Combined , 2004, Engineering Self-Organising Systems.

[56]  Ana L. C. Bazzan,et al.  Balancing Training Data for Automated Annotation of Keywords: a Case Study , 2003, WOB.

[57]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[58]  L. Douglas Kiel,et al.  Lessons from the Nonlinear Paradigm: Applications of the Theory of Dissipative Structures in the Social Sciences. , 1991 .