Disordered quantum walks in two-dimensional lattices plink

The properties of the two-dimensional quantum walk with point, line, and circle disorders in phase are reported. Localization is observed in the two-dimensional quantum walk with certain phase disorder and specific initial coin states. We give an explanation of the localization behavior via the localized stationary states of the unitary operator of the walker + coin system and the overlap between the initial state of the whole system and the localized stationary states.

[1]  Andris Ambainis,et al.  Quantum to classical transition for random walks. , 2003, Physical review letters.

[2]  Takuya Kitagawa,et al.  Exploring topological phases with quantum walks , 2010, 1003.1729.

[3]  M. Segev,et al.  Anderson localization of light , 2009, Nature Photonics.

[4]  Josh Izaac,et al.  Position-defect-induced reflection, trapping, transmission, and resonance in quantum walks , 2013 .

[5]  A. Politi,et al.  Quantum Walks of Correlated Photons , 2010, Science.

[6]  Viv Kendon,et al.  Decoherence can be useful in quantum walks , 2002, quant-ph/0209005.

[7]  Pawel Kurzynski,et al.  Discrete-time quantum walk approach to state transfer , 2011, 1103.4185.

[8]  R. Laflamme,et al.  Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor , 2005, quant-ph/0507267.

[9]  Barry C. Sanders,et al.  Two quantum walkers sharing coins , 2011, 1112.1487.

[10]  Dieter Meschede,et al.  Molecular binding in interacting quantum walks , 2012 .

[11]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[12]  A Schreiber,et al.  Decoherence and disorder in quantum walks: from ballistic spread to localization. , 2011, Physical review letters.

[13]  Peng Xue,et al.  Experimental realization of one-dimensional optical quantum walks , 2014 .

[14]  Andrew G. White,et al.  Observation of topologically protected bound states in photonic quantum walks , 2011, Nature Communications.

[15]  A Aspuru-Guzik,et al.  Discrete single-photon quantum walks with tunable decoherence. , 2010, Physical review letters.

[16]  Jiangfeng Du,et al.  Experimental implementation of the quantum random-walk algorithm , 2002, quant-ph/0203120.

[17]  Renato Portugal,et al.  Decoherence in two-dimensional quantum walks , 2006 .

[18]  Jian Li,et al.  Perfect state transfer and efficient quantum routing: a discrete-time quantum walk approach , 2014, 1405.6422.

[19]  Controlling and reversing the transition from classical diffusive to quantum ballistic transport in a quantum walk by driving the coin , 2012, 1209.3376.

[20]  Etsuo Segawa,et al.  Localization of quantum walks induced by recurrence properties of random walks , 2011, 1112.4982.

[21]  J Glueckert,et al.  Quantum walk of a trapped ion in phase space. , 2009, Physical review letters.

[22]  Andrew M. Childs,et al.  Universal computation by quantum walk. , 2008, Physical review letters.

[23]  Jiangfeng Du,et al.  Experimental implementation of a quantum random-walk search algorithm using strongly dipolar coupled spins , 2010 .

[24]  Andris Ambainis,et al.  QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS , 2003, quant-ph/0403120.

[25]  Neil B. Lovett,et al.  Universal quantum computation using the discrete-time quantum walk , 2009, 0910.1024.

[26]  Dieter Meschede,et al.  Quantum Walk in Position Space with Single Optically Trapped Atoms , 2009, Science.

[27]  A. Schreiber,et al.  A 2D Quantum Walk Simulation of Two-Particle Dynamics , 2012, Science.

[28]  A Schreiber,et al.  Photons walking the line: a quantum walk with adjustable coin operations. , 2009, Physical review letters.

[29]  K. Birgitta Whaley,et al.  Quantum random-walk search algorithm , 2002, quant-ph/0210064.

[30]  A. Crespi,et al.  Anderson localization of entangled photons in an integrated quantum walk , 2013, Nature Photonics.

[31]  Phillip L. Gould,et al.  Quantum random walk with Rydberg atoms in an optical lattice , 2006 .

[32]  Vivien M. Kendon,et al.  Optimal computation with non-unitary quantum walks , 2008, Theor. Comput. Sci..

[33]  Hao Qin,et al.  Trapping photons on the line: controllable dynamics of a quantum walk , 2014, Scientific Reports.

[34]  R. Blatt,et al.  Realization of a quantum walk with one and two trapped ions. , 2009, Physical review letters.

[35]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[36]  Rong Zhang,et al.  One-dimensional quantum walks with single-point phase defects , 2014 .

[37]  Andrew M. Childs,et al.  Universal Computation by Multiparticle Quantum Walk , 2012, Science.

[38]  H. Elze Decoherence and Entropy in Complex Systems , 2004 .

[39]  Barry C Sanders,et al.  Quantum walk on a line for a trapped ion. , 2009, Physical review letters.

[40]  Tomasz Luczak,et al.  Trapping a particle of a quantum walk on the line , 2011, 1112.1287.