Efficient Algorithms for Universal Quantum Simulation

A universal quantum simulator would enable efficient simulation of quantum dynamics by implementing quantum-simulation algorithms on a quantum computer. Specifically the quantum simulator would efficiently generate qubit-string states that closely approximate physical states obtained from a broad class of dynamical evolutions. I provide an overview of theoretical research into universal quantum simulators and the strategies for minimizing computational space and time costs. Applications to simulating many-body quantum simulation and solving linear equations are discussed

[1]  Amnon Ta-Shma,et al.  Adiabatic quantum state generation and statistical zero knowledge , 2003, STOC '03.

[2]  Louis H. Kauffman,et al.  Mathematics of Quantum Computation and Quantum Technology , 2007 .

[3]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[4]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[5]  Andrew M. Childs,et al.  Quantum information processing in continuous time , 2004 .

[6]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[7]  R. Feynman Simulating physics with computers , 1999 .

[8]  Barry C. Sanders,et al.  Limitations on continuous variable quantum algorithms with Fourier transforms , 2009 .

[9]  B. Sanders,et al.  Quantum-circuit design for efficient simulations of many-body quantum dynamics , 2011, 1108.4318.

[10]  Andrew M. Childs,et al.  Simulating Sparse Hamiltonians with Star Decompositions , 2010, TQC.

[11]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[12]  P. Høyer,et al.  Higher order decompositions of ordered operator exponentials , 2008, 0812.0562.

[13]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[14]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[15]  Erik Lucero,et al.  Emulation of a Quantum Spin with a Superconducting Phase Qudit , 2009, Science.

[16]  F. Nori,et al.  Quantum Simulators , 2009, Science.

[17]  Andrew M. Childs,et al.  Black-box hamiltonian simulation and unitary implementation , 2009, Quantum Inf. Comput..

[18]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[19]  Scott Aaronson,et al.  Quantum Computing since Democritus , 2013 .

[20]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[21]  Elham Kashefi,et al.  Quadratic Form Expansions for Unitaries , 2008, TQC.

[22]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[23]  Marco Lanzagorta,et al.  Quantum Simulators , 2013 .

[24]  R. Cleve,et al.  Quantum algorithms for hamiltonian simulation , 2007 .