Imputation of missing data via penalization techniques
暂无分享,去创建一个
[1] A. Tikhonov. On the stability of inverse problems , 1943 .
[2] Jun Yan,et al. Enjoy the Joy of Copulas: With a Package copula , 2007 .
[3] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[4] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[5] Hongtu Zhu,et al. VARIABLE SELECTION FOR REGRESSION MODELS WITH MISSING DATA. , 2010, Statistica Sinica.
[6] Jörg Drechsler,et al. Does Convergence Really Matter , 2008 .
[7] G. A. Young,et al. Recent Developments in Bootstrap Methodology , 2003 .
[8] Marius Hofert,et al. Nested Archimedean Copulas Meet R: The nacopula Package , 2011 .
[9] D. Rubin. INFERENCE AND MISSING DATA , 1975 .
[10] J. Schafer. Multiple imputation: a primer , 1999, Statistical methods in medical research.
[11] Trevor Hastie,et al. Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.
[12] Joseph L Schafer,et al. Analysis of Incomplete Multivariate Data , 1997 .
[13] Cedric E. Ginestet. ggplot2: Elegant Graphics for Data Analysis , 2011 .
[14] Jun Yan,et al. Modeling Multivariate Distributions with Continuous Margins Using the copula R Package , 2010 .
[15] T. Hothorn,et al. Multivariate Normal and t Distributions , 2016 .
[16] D. Rubin,et al. Statistical Analysis with Missing Data , 1988 .
[17] Stef van Buuren,et al. MICE: Multivariate Imputation by Chained Equations in R , 2011 .
[18] Ludwig Fahrmeir,et al. Regression: Models, Methods and Applications , 2013 .