Synthesis the Sandwich-Type of Mnmoo4@Nimoo4@Mn2o3 Core­-Shell Nanostructured Materials and Their Application in the High­-Performance Battery­-Supercapacitor Hybrid Devices

[1]  Shuijian He,et al.  Potassium citrate assisted synthesis of hierarchical porous carbon materials for high performance supercapacitors , 2022, Diamond and Related Materials.

[2]  W. Chen,et al.  All-cellulose-based high-rate performance solid-state supercapacitor enabled by nitrogen doping and porosity tuning , 2022, Diamond and Related Materials.

[3]  J. Yu,et al.  Co2Mo3O8/Co3O4 micro-flowers architectured material for high-performance supercapacitor electrodes , 2022, Journal of Alloys and Compounds.

[4]  Yimin A. Wu,et al.  Wood-derived biochar as thick electrodes for high-rate performance supercapacitors , 2022, Biochar.

[5]  Esmail Sohouli,et al.  Preparation of a supercapacitor electrode based on carbon nano-onions/manganese dioxide/iron oxide nanocomposite , 2022, Journal of Energy Storage.

[6]  Shuijian He,et al.  Facile Electrodeposition of NiCo2O4 Nanosheets on Porous Carbonized Wood for Wood-Derived Asymmetric Supercapacitors , 2022, Polymers.

[7]  Fangyan Liu,et al.  Unraveling the Design Principles of Battery‐Supercapacitor Hybrid Devices: From Fundamental Mechanisms to Microstructure Engineering and Challenging Perspectives , 2022, Advanced Energy Materials.

[8]  Gaigai Duan,et al.  Wood-Derived High-Mass-Loading MnO2 Composite Carbon Electrode Enabling High Energy Density and High-Rate Supercapacitor. , 2022, Small.

[9]  Xinyu Liu,et al.  Hierarchically Porous Trimetallic Hydroxide Arrays for Aqueous Energy Storage and Oxygen Evolution with Enhanced Redox Kinetics , 2022, Journal of Alloys and Compounds.

[10]  Yongpeng Ma,et al.  Embedding NiS nanoflakes in electrospun carbon fibers containing NiS nanoparticles for hybrid supercapacitors , 2022, Chemical Engineering Journal.

[11]  Li Ma,et al.  Hierarchical polygon Co3O4 flakes/N,O-dual doped porous carbon frameworks for flexible hybrid supercapacitors , 2022, Electrochimica Acta.

[12]  Jiayao Fan,et al.  Oxygen-Vacancy-Rich NiMnZn-Layered Double Hydroxide Nanosheets Married with Mo2CTx MXene for High-Efficiency All-Solid-State Hybrid Supercapacitors , 2022, ACS Applied Energy Materials.

[13]  Joo Sung Kim,et al.  Electroplated core–shell nanowire network electrodes for highly efficient organic light-emitting diodes , 2022, Nano Convergence.

[14]  Qingxiang Wang,et al.  The Ni/Ni3S2 nanocomposite derived from Ni-ZIF with superior energy storage performance as cathodes for asymmetric supercapacitor and rechargeable aqueous zinc ion battery , 2022, Journal of Alloys and Compounds.

[15]  K. Ye,et al.  Binder-free ultrathin α-MnSe nanosheets for high performance supercapacitor , 2021 .

[16]  Huiyu Chen,et al.  Uniform MgCo2O4 porous nanoflakes and nanowires with superior electrochemical performance for asymmetric supercapacitors , 2021 .

[17]  B. Yuliarto,et al.  Borophene: Two-dimensional Boron Monolayer: Synthesis, Properties, and Potential Applications. , 2021, Chemical reviews.

[18]  T. Das,et al.  Nanocomposite of (α-Mn3O4/MnO)@rGO as a high performance electrode material for supercapacitors , 2021 .

[19]  Shih-Chieh Pu,et al.  Neoteric hollow tubular MnS/Co3S4 hybrids as high-performance electrode materials for supercapacitors , 2021 .

[20]  Hyun‐Wook Lee,et al.  Synthesis of porous CuCo2O4 nanorods/reduced graphene oxide composites via a facile microwave hydrothermal method for high-performance hybrid supercapacitor applications , 2021 .

[21]  M. Ulaganathan,et al.  Building next-generation supercapacitors with battery type Ni(OH)2 , 2021, Journal of Materials Chemistry A.

[22]  Rui Xia,et al.  Integrated Battery-Capacitor Electrodes: Pyridinic N-Doped Porous Carbon-Coated Abundant Oxygen Vacancy Mn-Ni-Layered Double Oxide for Hybrid Supercapacitors. , 2021, ACS applied materials & interfaces.

[23]  T. Zhu,et al.  Solid-State Double-Network Hydrogel Redox Electrolytes for High-Performance Flexible Supercapacitors. , 2021, ACS applied materials & interfaces.

[24]  Do Van Lam,et al.  Graphitic Carbon with MnO/Mn7 C3 Prepared by Laser-Scribing of MOF for Versatile Supercapacitor Electrodes. , 2021, Small.

[25]  Fuzhi Li,et al.  Metal-Rich Porous Copper Cobalt Phosphide Nanoplates as a High-Rate and Stable Battery-Type Cathode Material for Battery–Supercapacitor Hybrid Devices , 2021 .

[26]  Zhong‐Shuai Wu,et al.  A high-performance rocking-chair lithium-ion battery-supercapacitor hybrid device boosted by doubly matched capacity and kinetics of the faradaic electrodes , 2021 .

[27]  K. Qi,et al.  Design and Synthesis of Conductive Metal‐Organic Frameworks and Their Composites for Supercapacitors , 2021 .

[28]  Hongbing Deng,et al.  Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors , 2021 .

[29]  Wenbin Gong,et al.  MOF-derived vertically stacked Mn2O3@C flakes for fiber-shaped zinc-ion batteries , 2020 .

[30]  Yi Wang,et al.  Ni-Co selenide nanowires supported on conductive wearable textile as cathode for flexible battery-supercapacitor hybrid devices , 2020 .

[31]  Ashutosh Kumar Singh,et al.  Designing vertically aligned porous NiCo2O4@MnMoO4 Core@Shell nanostructures for high-performance asymmetric supercapacitors. , 2020, Journal of colloid and interface science.

[32]  Cong Wang,et al.  High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices , 2020 .

[33]  Xiaoyan Liu,et al.  A high-performance electrode based on the ZnCo2O4@CoMoO4 core-shell nanosheet arrays on nickel foam and their application in battery-supercapacitor hybrid device , 2020 .

[34]  Haiqun Chen,et al.  Mn-Doped NiMoO4 Mesoporous Nanorods/Reduced Graphene Oxide Composite for High-Performance All-Solid-State Supercapacitor , 2020 .

[35]  Xudong Zhao,et al.  Fabrication of CuO@NiMoO4 core-shell nanowire arrays on copper foam and their application in high-performance all-solid-state asymmetric supercapacitors , 2019, Journal of Power Sources.

[36]  Chunjian Xu,et al.  Advanced battery-supercapacitor hybrid device based on Co/Ni-ZIFs-derived NiCo2S4 ultrathin nanosheets electrode with high performance , 2019, Applied Surface Science.

[37]  G. P. Sharma,et al.  Ultrasmall NiMoO4 robust nanoclusters-active carbon composite for high performance extrinsic pseudocapacitor , 2019, Electrochimica Acta.

[38]  Ying-Yu Huang,et al.  Synthesizing Ni-based ternary metal compounds for battery-supercapacitor hybrid devices with and without using nickel precursors , 2019, Materials Science in Semiconductor Processing.

[39]  J. Leng,et al.  Integrated System of Solar Cells with Hierarchical NiCo2O4 Battery-Supercapacitor Hybrid Devices for Self-Driving Light-Emitting Diodes , 2019, Nano-micro letters.

[40]  Lin Tang,et al.  Core-shell nanomaterials: Applications in energy storage and conversion. , 2019, Advances in colloid and interface science.

[41]  K. Mukhopadhyay,et al.  Impact of process conditions on the electrochemical performances of NiMoO4 nanorods and activated carbon based asymmetric supercapacitor , 2019, Applied Surface Science.

[42]  L. Mai,et al.  Hierarchical MnCo2O4@NiMoO4 as free-standing core–shell nanowire arrays with synergistic effect for enhanced supercapacitor performance , 2019, Inorganic Chemistry Frontiers.

[43]  Q. Hao,et al.  Hierarchical electrodes of NiCo2S4 nanosheets-anchored sulfur-doped Co3O4 nanoneedles with advanced performance for battery-supercapacitor hybrid devices , 2019, Journal of Materials Chemistry A.

[44]  Mingyue Chen,et al.  Design of oxygen-deficient NiMoO4 nanoflake and nanorod arrays with enhanced supercapacitive performance , 2018, Chemical Engineering Journal.

[45]  Xizheng Liu,et al.  Porous Mn2O3 cathode for highly durable Li–CO2 batteries , 2018 .

[46]  D. Anang,et al.  Facile room temperature synthesis and application of MnMoO4·0.9H2O as supercapacitor electrode material , 2018 .

[47]  A. Sakunthala,et al.  Morphology dependent electrochemical capacitor performance of NiMoO4 nanoparticles , 2017 .

[48]  Yujia Zeng,et al.  Three-Dimensional NiCo2O4@MnMoO4 Core-Shell Nanoarrays for High-Performance Asymmetric Supercapacitors. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[49]  W. Fei,et al.  Hierarchical CuCo2O4@NiMoO4 core–shell hybrid arrays as a battery-like electrode for supercapacitors , 2017 .

[50]  Jingzheng Ren,et al.  Dual-porosity Mn2O3 cubes for highly efficient dye adsorption. , 2017, Journal of hazardous materials.

[51]  Jinping Liu,et al.  Battery‐Supercapacitor Hybrid Devices: Recent Progress and Future Prospects , 2017, Advanced science.

[52]  Yongfeng Li,et al.  Synthesis of NiMoO4 nanosheets on graphene sheets as advanced supercapacitor electrode materials , 2016 .

[53]  G. Zeng,et al.  Nanostructured core-shell electrode materials for electrochemical capacitors , 2016 .

[54]  E. Xie,et al.  A high energy density asymmetric supercapacitor from ultrathin manganese molybdate nanosheets , 2016 .

[55]  Gang Chen,et al.  Layered nickel metal–organic framework for high performance alkaline battery-supercapacitor hybrid devices , 2016 .

[56]  Xiao-juan Zhang,et al.  NiCo2O4@MnMoO4 core–shell flowers for high performance supercapacitors , 2016 .

[57]  Yong Wang,et al.  Carbon-Coated MnMoO4 Nanorod for High-Performance Lithium-Ion Batteries , 2016 .

[58]  Rujia Zou,et al.  MnMoO4·4H2O nanoplates grown on a Ni foam substrate for excellent electrochemical properties , 2014 .

[59]  Kalim Deshmukh,et al.  MXene based emerging materials for supercapacitor applications: Recent advances, challenges, and future perspectives , 2022, Coordination Chemistry Reviews.

[60]  H. Pang,et al.  Core-shell materials for advanced batteries , 2019, Chemical Engineering Journal.