Tiny MoO3 nanocrystals self-assembled on folded molybdenum disulfide nanosheets via a hydrothermal method for supercapacitor

ABSTRACT Coupling of two active semiconductors can easily lead to a deterioration of their intrinsic properties. In this work, tiny MoO3 nanocrystals were deposited on 3D MoS2 frameworks via a hydrothermal reaction, with heterostructures forming by oxygen-bonding interactions at their interface. When tested as a supercapacitor electrode, the MoS2/MoO3 heterostructure exhibited a high specific capacitance of 287.7 F g−1 at a current density of 1 A g−1, and a remarkable cycling stability after 1000 cycles at 1 A g−1 in an aqueous solution compared to pristine MoS2. The results thus reveal the superior properties of the MoS2/MoO3 heterostructure for supercapacitor electrode. GRAPHICAL ABSTRACT IMPACT STATEMENT We successfully synthesized tiny MoO3 nanocrystals deposited on 3D MoS2 frameworks via a self-assembly. The MoS2/MoO3 heterostructure exhibited a high specific capacitance and cycling stability compared to pristine MoS2.

[1]  Ke-Jing Huang,et al.  Superior mixed Co-Cd selenide nanorods for high performance alkaline battery-supercapacitor hybrid energy storage , 2018 .

[2]  Y. Sui,et al.  One-step hydrothermal synthesis of a CoS2@MoS2 nanocomposite for high-performance supercapacitors , 2018 .

[3]  Rajender Boddula,et al.  Single-step hydrothermal synthesis of wrinkled graphene wrapped TiO2 nanotubes for photocatalytic hydrogen production and supercapacitor applications , 2018 .

[4]  Wei Xu,et al.  Hierarchical MoS2 nanowires/NiCo2O4 nanosheets supported on Ni foam for high-performance asymmetric supercapacitors , 2018 .

[5]  Xiulin He,et al.  Ultrahigh-performance pseudocapacitor based on phase-controlled synthesis of MoS 2 nanosheets decorated Ni 3 S 2 hybrid structure through annealing treatment , 2017 .

[6]  Jingxia Qiu,et al.  Facile preparation of NiFe2O4/MoS2 composite material with synergistic effect for high performance supercapacitor , 2017 .

[7]  Ke-Jing Huang,et al.  Recent advances in transition-metal dichalcogenides based electrochemical biosensors: A review. , 2017, Biosensors & bioelectronics.

[8]  Huihui Mao,et al.  Hierarchical mesoporous Co3O4/C@MoS2 core–shell structured materials for electrochemical energy storage with high supercapacitive performance , 2017 .

[9]  Ke-Jing Huang,et al.  A review of recent progress in molybdenum disulfide-based supercapacitors and batteries , 2017 .

[10]  Y. Shin,et al.  MoS2@VS2 Nanocomposite as a Superior Hybrid Anode Material. , 2017, ACS applied materials & interfaces.

[11]  Aneeya K. Samantara,et al.  Highly Active 2D Layered MoS2-rGO Hybrids for Energy Conversion and Storage Applications , 2017, Scientific Reports.

[12]  T. He,et al.  One-pot mass preparation of MoS2/C aerogels for high-performance supercapacitors and lithium-ion batteries. , 2017, Nanoscale.

[13]  M. Sarno,et al.  Supercapacitors Based on High Surface Area MoS2 and MoS2–Fe3O4 Nanostructures Supported on Physical Exfoliated Graphite , 2017 .

[14]  Ying Ma,et al.  Supercapacitor Performances of the MoS2/CoS2 Nanotube Arrays in Situ Grown on Ti Plate , 2017 .

[15]  Lijun Zhao,et al.  Arrays of hierarchical nickel sulfides/MoS2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor , 2017 .

[16]  Guang Li,et al.  Synthesis of rambutan-like MoS2/mesoporous carbon spheres nanocomposites with excellent performance for supercapacitors , 2017 .

[17]  Moo Hwan Cho,et al.  Simple and Large Scale Construction of MoS2-g-C3N4 Heterostructures Using Mechanochemistry for High Performance Electrochemical Supercapacitor and Visible Light Photocatalytic Applications , 2017, Scientific Reports.

[18]  Tianqi Li,et al.  Highly conductive and flexible molybdenum oxide nanopaper for high volumetric supercapacitor electrode , 2017 .

[19]  L. Kong,et al.  Design and preparation of MoO2/MoS2 as negative electrode materials for supercapacitors , 2016 .

[20]  C. Byon,et al.  Enhanced photocatalytic activity of ZnS nanoparticles loaded with MoS 2 nanoflakes by self-assembly approach , 2016 .

[21]  Guozhao Fang,et al.  Oxygen-Incorporated MoS2 Nanosheets with Expanded Interlayers for Hydrogen Evolution Reaction and Pseudocapacitor Applications. , 2016, ACS Applied Materials and Interfaces.

[22]  Arnab Bhattacharya,et al.  Nanostructured MoS2/BiVO4 Composites for Energy Storage Applications , 2016, Scientific Reports.

[23]  Jinqing Wang,et al.  Facile construction of 3D graphene/MoS 2 composites as advanced electrode materials for supercapacitors , 2016 .

[24]  Xue Liu,et al.  Net-like molybdenum selenide–acetylene black supported on Ni foam for high-performance supercapacitor electrodes and hydrogen evolution reaction , 2016 .

[25]  Peng Zhang,et al.  Hierarchically Layered MoS2/Mn3O4 Hybrid Architectures for Electrochemical Supercapacitors with Enhanced Performance , 2016 .

[26]  Xinyu Cheng,et al.  Dual-Doped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiber-Shaped Asymmetric Supercapacitors and Microbial Fuel Cells. , 2016, Angewandte Chemie.

[27]  Ziqiang Zhu,et al.  High photocatalytic performance of a type-II α-MoO3@MoS2 heterojunction: from theory to experiment. , 2016, Physical chemistry chemical physics : PCCP.

[28]  Eider Goikolea,et al.  Review on supercapacitors: Technologies and materials , 2016 .

[29]  N. Iqbal,et al.  Specific Capacitance and Cyclic Stability of Graphene Based Metal/Metal Oxide Nanocomposites: A Review , 2015 .

[30]  H. Zeng,et al.  Optimizing Hybridization of 1T and 2H Phases in MoS2 Monolayers to Improve Capacitances of Supercapacitors , 2015 .

[31]  M. Chhowalla,et al.  Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. , 2015, Nature nanotechnology.

[32]  Xiao Zhang,et al.  Preparation of MoS2-MoO3 hybrid nanomaterials for light-emitting diodes. , 2014, Angewandte Chemie.

[33]  S. Khondaker,et al.  Photoluminescence Quenching in Single-layer MoS2 via Oxygen Plasma Treatment , 2014, 1405.0646.

[34]  K. Krishnamoorthy,et al.  Supercapacitive properties of hydrothermally synthesized sphere like MoS2 nanostructures , 2014 .

[35]  Xingzhong Zhao,et al.  In situ growth of double-layer MoO3/MoS2 film from MoS2 for hole-transport layers in organic solar cell , 2014 .

[36]  G. B. Reddy,et al.  Synthesis and characterization of α-MoO3 microspheres packed with nanoflakes , 2014 .

[37]  Ke-Jing Huang,et al.  Layered MoS2–graphene composites for supercapacitor applications with enhanced capacitive performance , 2013 .

[38]  L. Mai,et al.  Lithiated MoO3 Nanobelts with Greatly Improved Performance for Lithium Batteries , 2007 .