Algorithm refinement for stochastic partial differential equations: II. Correlated systems

[1]  Jan V. Sengers,et al.  On the Physical Origin of Long-Ranged Fluctuations in Fluids in Thermal Nonequilibrium States , 2004 .

[2]  E. Moro Hybrid method for simulating front propagation in reaction-diffusion systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Graham V. Candler,et al.  A hybrid continuum/particle approach for modeling subsonic, rarefied gas flows , 2004 .

[4]  Xiaobo Nie,et al.  A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow , 2004, Journal of Fluid Mechanics.

[5]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[6]  P. Smereka,et al.  Coupling kinetic Monte-Carlo and continuum models with application to epitaxial growth , 2003 .

[7]  P. Coveney,et al.  Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Daniel M. Tartakovsky,et al.  Algorithm refinement for stochastic partial differential equations: I. linear diffusion , 2002 .

[9]  O. Aktas,et al.  A Combined Continuum/DSMC Technique for Multiscale Analysis of Microfluidic Filters , 2002 .

[10]  Daniel M. Tartakovsky,et al.  Algorithm refinement for stochastic partial differential equations. , 2003 .

[11]  Eirik Grude Flekkøy,et al.  Hybrid model for combined particle and continuum dynamics , 2000 .

[12]  J. Q. Broughton,et al.  Concurrent Coupling of Length Scales in Solid State Systems , 2000 .

[13]  Alejandro L. Garcia,et al.  Adaptive Mesh and Algorithm Refinement Using Direct Simulation Monte Carlo , 1999 .

[14]  Alejandro L. Garcia,et al.  Numerical Methods for Physics (2nd Edition) , 1999 .

[15]  Noam Bernstein,et al.  Spanning the length scales in dynamic simulation , 1998 .

[16]  Ronald E. Miller,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[17]  Patrick Le Tallec,et al.  Coupling Boltzmann and Navier-Stokes Equations by Half Fluxes , 1997 .

[18]  A. Patera,et al.  Heterogeneous Atomistic-Continuum Representations for Dense Fluid Systems , 1997 .

[19]  Alejandro L. Garcia,et al.  A simple model for nonequilibrium fluctuations in a fluid , 1996 .

[20]  O'Connell,et al.  Molecular dynamics-continuum hybrid computations: A tool for studying complex fluid flows. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  H. Taitelbaum Statistical thermophysics , 1995 .

[22]  Alejandro L. Garcia Numerical methods for physics , 1994 .

[23]  J. M. Haile,et al.  Molecular dynamics simulation : elementary methods / J.M. Haile , 1992 .

[24]  D. C. Wadsworth,et al.  One-dimensional hybrid continuum/particle simulation approach for rarefied hypersonic flows , 1990 .

[25]  R Schmitz,et al.  FLUCTUATIONS IN NONEQUILIBRIUM FLUIDS , 1988 .

[26]  Mansour,et al.  Hydrodynamic fluctuations in a dilute gas under shear. , 1987, Physical review. A, General physics.

[27]  Alejandro L. Garcia,et al.  Numerical integration of the fluctuating hydrodynamic equations , 1987 .

[28]  Alejandro L. Garcia Thermal fluctuations in a Knudsen flow system , 1987 .

[29]  Michel Mareschal,et al.  Hydrodynamic Fluctuations in a Fluid under Constant Shear , 1987 .

[30]  Herbert Spohn,et al.  Long range correlations for stochastic lattice gases in a non-equilibrium steady state , 1983 .

[31]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[32]  R. Lindsay,et al.  The Conceptual Foundations of the Statistical Approach in Mechanics , 1959 .