New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism

I. Ntalla | D. Postma | D. Lawlor | T. Lehtimäki | H. Hakonarson | S. Grant | T. Jørgensen | J. Hirschhorn | Z. Kutalik | S. Ring | T. Frayling | R. Freathy | B. Shields | A. Hattersley | C. Groves | N. Timpson | J. Viikari | C. Cooper | O. Raitakari | F. Rivadeneira | G. Koppelman | K. Bønnelykke | H. Bisgaard | N. Warrington | A. Prentice | U. Sovio | G. Willemsen | K. Mohlke | N. Klopp | J. Bradfield | O. Simell | T. Lakka | M. Stumvoll | H. Inskip | K. Godfrey | N. Wareham | M. Horikoshi | A. Mahajan | V. Lagou | J. Hottenga | A. Isaacs | E. Hyppönen | C. Power | M. Järvelin | I. Prokopenko | C. Kuzawa | D. Hougaard | B. Knight | K. Ong | F. Alkuraya | A. Bennett | N. Robertson | J. Kemp | M. Kaakinen | George Mcmahon | G. Dedoussis | P. Vollenweider | E. Widén | James F. Wilson | G. Smith | Jinghua Zhao | D. Mook-Kanamori | T. Slowinski | A. Pouta | L. Adair | F. Gottrand | A. Meirhaeghe | V. Jaddoe | C. Duijn | C. Boreham | A. Tönjes | B. Feenstra | F. Geller | M. Melbye | C. Pennell | D. Witte | H. Yaghootkar | E. Thiering | A. Blakemore | E. D. Geus | J. Vink | M. Gillman | M. Hollegaard | L. Moreno | J. Holloway | D. Cousminer | E. M. Leeuwen | V. Lindi | A. Körner | W. Kiess | B. Hennig | M. Bustamante | Haitao Zhang | M. Hoed | J. Newnham | J. Buxton | M. Kerkhof | B. Hocher | C. Kanaka-Gantenbein | M. Kirin | M. Guxens | N. Vissing | E. Andersson | Liang Goh | B. Meyer | A. Fulford | K. Jameson | H. Niinikoski | S. Barton | C. Flexeder | D. Berry | Shikta Das | Jani Heikkinen | E. Pearson | D. Monies | K. Zhou | P. Charoen | Carla M. T. Tiesler | M. N. Harder | A. Al-odaib | M. Saarinen | T. Pfab | L. Pedersen | S. Saw | Jing Hua Zhao | A. Uitterlinden | J. Heinrich | J. Eriksson | A. Hofman | B. Oostra | D. Boomsma | R. Loos | Tuomas O. Kilpeläinen | Dennis O. Mook-Kanamori | Ying Wu | T. Hansen | Oluf Pedersen | Xavier Estivill | Mark I. McCarthy | P. Amouyel | P. Froguel | Allan Vaag | Torben Hansen | David M. Evans | P. Froguel | B. S. Pourcain | M. McCarthy | Eskil Kreiner-Møller | Jean Dallongeville | H. Taal | R. M. Salem | P. Amouyel | Jean Dallongeville | Sylvain Sebert | Jianhua Zhao | Mònica Guxens | Mark I Mccarthy | C. Cooper | C. Cooper | Tuomas O Kilpeläinen

[1]  M. Jarvelin,et al.  Common variants at 6q22 and 17q21 are associated with intracranial volume , 2012, Nature Genetics.

[2]  Wiro J Niessen,et al.  Common variants at 6q22 and 17q21 are associated with intracranial volume , 2012, Nature Genetics.

[3]  Aad van der Lugt,et al.  Common variants at 12q15 and 12q24 are associated with infant head circumference , 2012, Nature Genetics.

[4]  A. Dyer,et al.  Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study , 2012, Diabetes Care.

[5]  Tien Yin Wong,et al.  Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci , 2011, Nature Genetics.

[6]  Tom R. Gaunt,et al.  Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk , 2011, Nature.

[7]  Mark I McCarthy,et al.  Genomic inflation factors under polygenic inheritance , 2011, European Journal of Human Genetics.

[8]  Andrew D. Johnson,et al.  Association of Hypertension Drug Target Genes With Blood Pressure and Hypertension in 86 588 Individuals , 2011, Hypertension.

[9]  G. Abecasis,et al.  MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes , 2010, Genetic epidemiology.

[10]  Yusuke Nakamura,et al.  A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B , 2010, Nature Genetics.

[11]  Ayellet V. Segrè,et al.  Hundreds of variants clustered in genomic loci and biological pathways affect human height , 2010, Nature.

[12]  Tanya M. Teslovich,et al.  Biological, Clinical, and Population Relevance of 95 Loci for Blood Lipids , 2010, Nature.

[13]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[14]  Ayellet V. Segrè,et al.  Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis , 2010, Nature Genetics.

[15]  Reedik Mägi,et al.  GWAMA: software for genome-wide association meta-analysis , 2010, BMC Bioinformatics.

[16]  T. Hansen,et al.  Type 2 diabetes risk alleles near ADCY5, CDKAL1 and HHEX-IDE are associated with reduced birthweight , 2010, Diabetologia.

[17]  Simon C. Potter,et al.  New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk (vol 42, pg 105, 2010) , 2010 .

[18]  P. O’Reilly,et al.  Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight , 2010, Nature Genetics.

[19]  Yurii S. Aulchenko,et al.  ProbABEL package for genome-wide association analysis of imputed data , 2010, BMC Bioinformatics.

[20]  Alex Doney,et al.  Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge , 2010, Nature Genetics.

[21]  P. Elliott,et al.  New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk , 2010, Nature Genetics.

[22]  Daniel F. Gudbjartsson,et al.  Parental origin of sequence variants associated with complex diseases , 2009, Nature.

[23]  Jean Tichet,et al.  Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia , 2009, Nature Genetics.

[24]  Karlis Podnieks,et al.  A System for Information Management in BioMedical Studies—SIMBioMS , 2009, Bioinform..

[25]  Joseph T. Glessner,et al.  Examination of Type 2 Diabetes Loci Implicates CDKAL1 as a Birth Weight Gene , 2009, Diabetes.

[26]  J. Dungan,et al.  Hyperglycemia and Adverse Pregnancy Outcomes , 2009 .

[27]  Mark I. McCarthy,et al.  Genetic Determinants of Height Growth Assessed Longitudinally from Infancy to Adulthood in the Northern Finland Birth Cohort 1966 , 2009, PLoS genetics.

[28]  Mark I. McCarthy,et al.  Type 2 Diabetes Risk Alleles Are Associated With Reduced Size at Birth , 2009, Diabetes.

[29]  C. Lenfant Low birth weight and blood pressure. , 2008, Metabolism: clinical and experimental.

[30]  P. Munroe,et al.  Genome-wide association analysis identifies 20 loci that influence adult height , 2008, Nature Genetics.

[31]  M. McCarthy,et al.  Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes , 2008, Nature Genetics.

[32]  P. Andersen,et al.  Birth weight and systolic blood pressure in adolescence and adulthood: meta-regression analysis of sex- and age-specific results from 20 Nordic studies. , 2007, American journal of epidemiology.

[33]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[34]  M. McCarthy,et al.  Common variants in WFS1 confer risk of type 2 diabetes , 2007, Nature Genetics.

[35]  D. Gudbjartsson,et al.  Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes , 2007, Nature Genetics.

[36]  P. Donnelly,et al.  A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.

[37]  Marcia M. Nizzari,et al.  Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels , 2007, Science.

[38]  M. Jarvelin,et al.  Type 2 diabetes TCF7L2 risk genotypes alter birth weight: a study of 24,053 individuals. , 2007, American journal of human genetics.

[39]  M. McCarthy,et al.  Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes , 2007, Science.

[40]  J. Gulcher,et al.  A variant in CDKAL1 influences insulin response and risk of type 2 diabetes , 2007, Nature Genetics.

[41]  Y. Aulchenko,et al.  BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btm108 Genetics and population analysis GenABEL: an R library for genome-wide association analysis , 2022 .

[42]  T. Hudson,et al.  A genome-wide association study identifies novel risk loci for type 2 diabetes , 2007, Nature.

[43]  H. Stefánsson,et al.  Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes , 2006, Nature Genetics.

[44]  Richard W Jones,et al.  Genetic regulation of birth weight and fasting glucose by a common polymorphism in the islet cell promoter of the glucokinase gene. , 2005, Diabetes.

[45]  S. Thompson,et al.  Quantifying heterogeneity in a meta‐analysis , 2002, Statistics in medicine.

[46]  Eric S. Lander,et al.  The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes , 2000, Nature Genetics.

[47]  D J Barker,et al.  Fetal nutrition and adult disease. , 2000, The American journal of clinical nutrition.

[48]  K. Roeder,et al.  Genomic Control for Association Studies , 1999, Biometrics.

[49]  A. Hattersley,et al.  The fetal insulin hypothesis: an alternative explanation of the association of low bir thweight with diabetes and vascular disease , 1999, The Lancet.

[50]  Sian Ellard,et al.  Mutations in the glucokinase gene of the fetus result in reduced birth weight , 1998, Nature Genetics.

[51]  J. Fryer,et al.  An Update of the Swedish Reference Standards for Weight, Length and Head Circumference at Birth for Given Gestational Age (1977‐1981) , 1991, Acta paediatrica Scandinavica.

[52]  Tanya M. Teslovich,et al.  Association analyses of 249 , 796 individuals reveal 18 new loci associated with body mass index , 2012 .

[53]  Inês Barroso,et al.  Variants in MTNR1B influence fasting glucose levels , 2009, Nature Genetics.

[54]  Yun-Cai Liu,et al.  Association of the , 1995 .

[55]  G. Abecasis,et al.  Supporting Online Material Materials and Methods Figs. S1 to S8 Tables S1 to S10 References a Genome-wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants , 2022 .