New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism
暂无分享,去创建一个
I. Ntalla | D. Postma | D. Lawlor | T. Lehtimäki | H. Hakonarson | S. Grant | T. Jørgensen | J. Hirschhorn | Z. Kutalik | S. Ring | T. Frayling | R. Freathy | B. Shields | A. Hattersley | C. Groves | N. Timpson | J. Viikari | C. Cooper | O. Raitakari | F. Rivadeneira | G. Koppelman | K. Bønnelykke | H. Bisgaard | N. Warrington | A. Prentice | U. Sovio | G. Willemsen | K. Mohlke | N. Klopp | J. Bradfield | O. Simell | T. Lakka | M. Stumvoll | H. Inskip | K. Godfrey | N. Wareham | M. Horikoshi | A. Mahajan | V. Lagou | J. Hottenga | A. Isaacs | E. Hyppönen | C. Power | M. Järvelin | I. Prokopenko | C. Kuzawa | D. Hougaard | B. Knight | K. Ong | F. Alkuraya | A. Bennett | N. Robertson | J. Kemp | M. Kaakinen | George Mcmahon | G. Dedoussis | P. Vollenweider | E. Widén | James F. Wilson | G. Smith | Jinghua Zhao | D. Mook-Kanamori | T. Slowinski | A. Pouta | L. Adair | F. Gottrand | A. Meirhaeghe | V. Jaddoe | C. Duijn | C. Boreham | A. Tönjes | B. Feenstra | F. Geller | M. Melbye | C. Pennell | D. Witte | H. Yaghootkar | E. Thiering | A. Blakemore | E. D. Geus | J. Vink | M. Gillman | M. Hollegaard | L. Moreno | J. Holloway | D. Cousminer | E. M. Leeuwen | V. Lindi | A. Körner | W. Kiess | B. Hennig | M. Bustamante | Haitao Zhang | M. Hoed | J. Newnham | J. Buxton | M. Kerkhof | B. Hocher | C. Kanaka-Gantenbein | M. Kirin | M. Guxens | N. Vissing | E. Andersson | Liang Goh | B. Meyer | A. Fulford | K. Jameson | H. Niinikoski | S. Barton | C. Flexeder | D. Berry | Shikta Das | Jani Heikkinen | E. Pearson | D. Monies | K. Zhou | P. Charoen | Carla M. T. Tiesler | M. N. Harder | A. Al-odaib | M. Saarinen | T. Pfab | L. Pedersen | S. Saw | Jing Hua Zhao | A. Uitterlinden | J. Heinrich | J. Eriksson | A. Hofman | B. Oostra | D. Boomsma | R. Loos | Tuomas O. Kilpeläinen | Dennis O. Mook-Kanamori | Ying Wu | T. Hansen | Oluf Pedersen | Xavier Estivill | Mark I. McCarthy | P. Amouyel | P. Froguel | Allan Vaag | Torben Hansen | David M. Evans | P. Froguel | B. S. Pourcain | M. McCarthy | Eskil Kreiner-Møller | Jean Dallongeville | H. Taal | R. M. Salem | P. Amouyel | Jean Dallongeville | Sylvain Sebert | Jianhua Zhao | Mònica Guxens | Mark I Mccarthy | C. Cooper | C. Cooper | Tuomas O Kilpeläinen
[1] M. Jarvelin,et al. Common variants at 6q22 and 17q21 are associated with intracranial volume , 2012, Nature Genetics.
[2] Wiro J Niessen,et al. Common variants at 6q22 and 17q21 are associated with intracranial volume , 2012, Nature Genetics.
[3] Aad van der Lugt,et al. Common variants at 12q15 and 12q24 are associated with infant head circumference , 2012, Nature Genetics.
[4] A. Dyer,et al. Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study , 2012, Diabetes Care.
[5] Tien Yin Wong,et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci , 2011, Nature Genetics.
[6] Tom R. Gaunt,et al. Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk , 2011, Nature.
[7] Mark I McCarthy,et al. Genomic inflation factors under polygenic inheritance , 2011, European Journal of Human Genetics.
[8] Andrew D. Johnson,et al. Association of Hypertension Drug Target Genes With Blood Pressure and Hypertension in 86 588 Individuals , 2011, Hypertension.
[9] G. Abecasis,et al. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes , 2010, Genetic epidemiology.
[10] Yusuke Nakamura,et al. A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B , 2010, Nature Genetics.
[11] Ayellet V. Segrè,et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height , 2010, Nature.
[12] Tanya M. Teslovich,et al. Biological, Clinical, and Population Relevance of 95 Loci for Blood Lipids , 2010, Nature.
[13] Yun Li,et al. METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..
[14] Ayellet V. Segrè,et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis , 2010, Nature Genetics.
[15] Reedik Mägi,et al. GWAMA: software for genome-wide association meta-analysis , 2010, BMC Bioinformatics.
[16] T. Hansen,et al. Type 2 diabetes risk alleles near ADCY5, CDKAL1 and HHEX-IDE are associated with reduced birthweight , 2010, Diabetologia.
[17] Simon C. Potter,et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk (vol 42, pg 105, 2010) , 2010 .
[18] P. O’Reilly,et al. Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight , 2010, Nature Genetics.
[19] Yurii S. Aulchenko,et al. ProbABEL package for genome-wide association analysis of imputed data , 2010, BMC Bioinformatics.
[20] Alex Doney,et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge , 2010, Nature Genetics.
[21] P. Elliott,et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk , 2010, Nature Genetics.
[22] Daniel F. Gudbjartsson,et al. Parental origin of sequence variants associated with complex diseases , 2009, Nature.
[23] Jean Tichet,et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia , 2009, Nature Genetics.
[24] Karlis Podnieks,et al. A System for Information Management in BioMedical Studies—SIMBioMS , 2009, Bioinform..
[25] Joseph T. Glessner,et al. Examination of Type 2 Diabetes Loci Implicates CDKAL1 as a Birth Weight Gene , 2009, Diabetes.
[26] J. Dungan,et al. Hyperglycemia and Adverse Pregnancy Outcomes , 2009 .
[27] Mark I. McCarthy,et al. Genetic Determinants of Height Growth Assessed Longitudinally from Infancy to Adulthood in the Northern Finland Birth Cohort 1966 , 2009, PLoS genetics.
[28] Mark I. McCarthy,et al. Type 2 Diabetes Risk Alleles Are Associated With Reduced Size at Birth , 2009, Diabetes.
[29] C. Lenfant. Low birth weight and blood pressure. , 2008, Metabolism: clinical and experimental.
[30] P. Munroe,et al. Genome-wide association analysis identifies 20 loci that influence adult height , 2008, Nature Genetics.
[31] M. McCarthy,et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes , 2008, Nature Genetics.
[32] P. Andersen,et al. Birth weight and systolic blood pressure in adolescence and adulthood: meta-regression analysis of sex- and age-specific results from 20 Nordic studies. , 2007, American journal of epidemiology.
[33] Manuel A. R. Ferreira,et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.
[34] M. McCarthy,et al. Common variants in WFS1 confer risk of type 2 diabetes , 2007, Nature Genetics.
[35] D. Gudbjartsson,et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes , 2007, Nature Genetics.
[36] P. Donnelly,et al. A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.
[37] Marcia M. Nizzari,et al. Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels , 2007, Science.
[38] M. Jarvelin,et al. Type 2 diabetes TCF7L2 risk genotypes alter birth weight: a study of 24,053 individuals. , 2007, American journal of human genetics.
[39] M. McCarthy,et al. Replication of Genome-Wide Association Signals in UK Samples Reveals Risk Loci for Type 2 Diabetes , 2007, Science.
[40] J. Gulcher,et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes , 2007, Nature Genetics.
[41] Y. Aulchenko,et al. BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btm108 Genetics and population analysis GenABEL: an R library for genome-wide association analysis , 2022 .
[42] T. Hudson,et al. A genome-wide association study identifies novel risk loci for type 2 diabetes , 2007, Nature.
[43] H. Stefánsson,et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes , 2006, Nature Genetics.
[44] Richard W Jones,et al. Genetic regulation of birth weight and fasting glucose by a common polymorphism in the islet cell promoter of the glucokinase gene. , 2005, Diabetes.
[45] S. Thompson,et al. Quantifying heterogeneity in a meta‐analysis , 2002, Statistics in medicine.
[46] Eric S. Lander,et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes , 2000, Nature Genetics.
[47] D J Barker,et al. Fetal nutrition and adult disease. , 2000, The American journal of clinical nutrition.
[48] K. Roeder,et al. Genomic Control for Association Studies , 1999, Biometrics.
[49] A. Hattersley,et al. The fetal insulin hypothesis: an alternative explanation of the association of low bir thweight with diabetes and vascular disease , 1999, The Lancet.
[50] Sian Ellard,et al. Mutations in the glucokinase gene of the fetus result in reduced birth weight , 1998, Nature Genetics.
[51] J. Fryer,et al. An Update of the Swedish Reference Standards for Weight, Length and Head Circumference at Birth for Given Gestational Age (1977‐1981) , 1991, Acta paediatrica Scandinavica.
[52] Tanya M. Teslovich,et al. Association analyses of 249 , 796 individuals reveal 18 new loci associated with body mass index , 2012 .
[53] Inês Barroso,et al. Variants in MTNR1B influence fasting glucose levels , 2009, Nature Genetics.
[54] Yun-Cai Liu,et al. Association of the , 1995 .
[55] G. Abecasis,et al. Supporting Online Material Materials and Methods Figs. S1 to S8 Tables S1 to S10 References a Genome-wide Association Study of Type 2 Diabetes in Finns Detects Multiple Susceptibility Variants , 2022 .