Biofilms: the matrix revisited.
暂无分享,去创建一个
Roberto Kolter | R. Kolter | S. Branda | L. Friedman | Steven S Branda | Shild Vik | Lisa Friedman | Shild Vik
[1] A. Camilli,et al. Cyclic diguanylate (c‐di‐GMP) regulates Vibrio cholerae biofilm formation , 2004, Molecular microbiology.
[2] R. Kolter,et al. Two Genetic Loci Produce Distinct Carbohydrate-Rich Structural Components of the Pseudomonas aeruginosa Biofilm Matrix , 2004, Journal of bacteriology.
[3] E. Greenberg,et al. Putative Exopolysaccharide Synthesis Genes Influence Pseudomonas aeruginosa Biofilm Development , 2004, Journal of bacteriology.
[4] M. Parsek,et al. Identification of psl, a Locus Encoding a Potential Exopolysaccharide That Is Essential for Pseudomonas aeruginosa PAO1 Biofilm Formation , 2004, Journal of bacteriology.
[5] G. Schoolnik,et al. Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant , 2004, Molecular microbiology.
[6] Michael Y. Galperin,et al. Bacterial signal transduction network in a genomic perspective. , 2004, Environmental microbiology.
[7] J. Preston,et al. The pgaABCD Locus of Escherichia coli Promotes the Synthesis of a Polysaccharide Adhesin Required for Biofilm Formation , 2004, Journal of bacteriology.
[8] B. Giese,et al. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. , 2004, Genes & development.
[9] E. Greenberg,et al. Quorum Sensing in Staphylococcus aureus Biofilms , 2004, Journal of bacteriology.
[10] Roberto Kolter,et al. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms , 2003, Molecular microbiology.
[11] P. Watnick,et al. The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+-dependent biofilm development in sea water , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[12] Jun Zhu,et al. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. , 2003, Developmental cell.
[13] Bonnie L Bassler,et al. Quorum sensing controls biofilm formation in Vibrio cholerae , 2003, Molecular microbiology.
[14] Søren Molin,et al. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms , 2003, Molecular microbiology.
[15] Afsar Ali,et al. Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae. , 2003, FEMS microbiology letters.
[16] J. Ramos,et al. Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein , 2003, Molecular microbiology.
[17] S. Kjelleberg,et al. Cell Death in Pseudomonas aeruginosa Biofilm Development , 2003, Journal of bacteriology.
[18] Matthew R. Parsek,et al. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[19] S. Molin,et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants , 2003, Molecular microbiology.
[20] S. Molin,et al. Development and maturation of Escherichia coli K‐12 biofilms , 2003, Molecular microbiology.
[21] P. Watnick,et al. Identification and Characterization of a Vibrio cholerae Gene, mbaA , Involved in Maintenance of Biofilm Architecture , 2022 .
[22] G. O’Toole,et al. Rhamnolipid Surfactant Production Affects Biofilm Architecture in Pseudomonas aeruginosa PAO1 , 2003, Journal of bacteriology.
[23] Donald A. Goldmann,et al. Immunochemical Properties of the Staphylococcal Poly-N-Acetylglucosamine Surface Polysaccharide , 2002, Infection and Immunity.
[24] R. Kolter,et al. Pseudomonas-Candida Interactions: An Ecological Role for Virulence Factors , 2002, Science.
[25] S. Falkow,et al. Caenorhabditis elegans: Plague bacteria biofilm blocks food intake , 2002, Nature.
[26] Frederick M. Ausubel,et al. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation , 2002, Nature.
[27] F. Götz. Staphylococcus and biofilms , 2002, Molecular microbiology.
[28] J. Mattick,et al. Extracellular DNA required for bacterial biofilm formation. , 2002, Science.
[29] Bonnie L. Bassler,et al. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[30] C. Solano,et al. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose , 2002, Molecular microbiology.
[31] D. Amikam,et al. Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. , 2001, FEMS microbiology letters.
[32] R. Losick,et al. Fruiting body formation by Bacillus subtilis , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[33] J. Nataro,et al. Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli , 2001, Molecular microbiology.
[34] J. Ghigo. Natural conjugative plasmids induce bacterial biofilm development , 2001, Nature.
[35] J. Costerton,et al. Antibiotic resistance of bacteria in biofilms , 2001, The Lancet.
[36] S. Lory,et al. The chaperone/usher pathways of Pseudomonas aeruginosa: Identification of fimbrial gene clusters (cup) and their involvement in biofilm formation , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[37] I. Sutherland,et al. The biofilm matrix--an immobilized but dynamic microbial environment. , 2001, Trends in microbiology.
[38] M. Rohde,et al. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix , 2001, Molecular microbiology.
[39] G. O’Toole,et al. Microbial Biofilms: from Ecology to Molecular Genetics , 2000, Microbiology and Molecular Biology Reviews.
[40] J. Ramos,et al. Genetic Analysis of Functions Involved in Adhesion of Pseudomonas putida to Seeds , 2000, Journal of bacteriology.
[41] J. Banfield,et al. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. , 2000, Science.
[42] S. Hultgren,et al. Bacterial pili: molecular mechanisms of pathogenesis. , 2000, Current opinion in microbiology.
[43] K. M. Lee,et al. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[44] G. Schoolnik,et al. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[45] B. Christensen,et al. Molecular tools for study of biofilm physiology. , 1999, Methods in enzymology.
[46] G. Schoolnik,et al. Vibrio cholerae O 1 El Tor : Identification of a gene cluster required for the rugose colony type , exopolysaccharide production , chlorine resistance , and biofilm formation , 1999 .
[47] R. Kolter,et al. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development , 1998, Molecular microbiology.
[48] Peter Ross,et al. Three cdg Operons Control Cellular Turnover of Cyclic Di-GMP in Acetobacter xylinum: Genetic Organization and Occurrence of Conserved Domains in Isoenzymes , 1998, Journal of bacteriology.
[49] J. Costerton,et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. , 1998, Science.
[50] Roberto Kolter,et al. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis , 1998, Molecular microbiology.
[51] Hui Wu,et al. Isolation and characterization of Fap1, a fimbriae‐associated adhesin of Streptococcus parasanguis FW213 , 1998, Molecular microbiology.
[52] M. Jobling,et al. Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene , 1997, Molecular microbiology.
[53] I. Henderson,et al. Phase-variable outer membrane proteins in Escherichia coli. , 1996, FEMS immunology and medical microbiology.
[54] D. Mack,et al. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis , 1996, Journal of bacteriology.
[55] G. Spatafora,et al. The fimA locus of Streptococcus parasanguis encodes an ATP‐binding membrane transport system , 1995, Molecular microbiology.
[56] J. Heesemann,et al. Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intercellular adhesin , 1994, Infection and immunity.
[57] P. Kolenbrander,et al. Adhere today, here tomorrow: oral bacterial adherence , 1993, Journal of bacteriology.
[58] R Mayer,et al. Cellulose biosynthesis and function in bacteria. , 1991, Microbiological reviews.
[59] D. Martin,et al. Mucoid Pseudomonas aeruginosa in cystic fibrosis: mutations in the muc loci affect transcription of the algR and algD genes in response to environmental stimuli , 1990, Molecular microbiology.
[60] B. Eisenstein. Phase variation of type 1 fimbriae in Escherichia coli is under transcriptional control. , 1981, Science.
[61] F. Andrewes. Studies in group-agglutination I. The salmonella group and its antigenic structure† , 1922 .