Biofilms: the matrix revisited.

[1]  A. Camilli,et al.  Cyclic diguanylate (c‐di‐GMP) regulates Vibrio cholerae biofilm formation , 2004, Molecular microbiology.

[2]  R. Kolter,et al.  Two Genetic Loci Produce Distinct Carbohydrate-Rich Structural Components of the Pseudomonas aeruginosa Biofilm Matrix , 2004, Journal of bacteriology.

[3]  E. Greenberg,et al.  Putative Exopolysaccharide Synthesis Genes Influence Pseudomonas aeruginosa Biofilm Development , 2004, Journal of bacteriology.

[4]  M. Parsek,et al.  Identification of psl, a Locus Encoding a Potential Exopolysaccharide That Is Essential for Pseudomonas aeruginosa PAO1 Biofilm Formation , 2004, Journal of bacteriology.

[5]  G. Schoolnik,et al.  Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant , 2004, Molecular microbiology.

[6]  Michael Y. Galperin,et al.  Bacterial signal transduction network in a genomic perspective. , 2004, Environmental microbiology.

[7]  J. Preston,et al.  The pgaABCD Locus of Escherichia coli Promotes the Synthesis of a Polysaccharide Adhesin Required for Biofilm Formation , 2004, Journal of bacteriology.

[8]  B. Giese,et al.  Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. , 2004, Genes & development.

[9]  E. Greenberg,et al.  Quorum Sensing in Staphylococcus aureus Biofilms , 2004, Journal of bacteriology.

[10]  Roberto Kolter,et al.  Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms , 2003, Molecular microbiology.

[11]  P. Watnick,et al.  The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+-dependent biofilm development in sea water , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Jun Zhu,et al.  Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. , 2003, Developmental cell.

[13]  Bonnie L Bassler,et al.  Quorum sensing controls biofilm formation in Vibrio cholerae , 2003, Molecular microbiology.

[14]  Søren Molin,et al.  Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms , 2003, Molecular microbiology.

[15]  Afsar Ali,et al.  Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae. , 2003, FEMS microbiology letters.

[16]  J. Ramos,et al.  Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein , 2003, Molecular microbiology.

[17]  S. Kjelleberg,et al.  Cell Death in Pseudomonas aeruginosa Biofilm Development , 2003, Journal of bacteriology.

[18]  Matthew R. Parsek,et al.  Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Molin,et al.  Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants , 2003, Molecular microbiology.

[20]  S. Molin,et al.  Development and maturation of Escherichia coli K‐12 biofilms , 2003, Molecular microbiology.

[21]  P. Watnick,et al.  Identification and Characterization of a Vibrio cholerae Gene, mbaA , Involved in Maintenance of Biofilm Architecture , 2022 .

[22]  G. O’Toole,et al.  Rhamnolipid Surfactant Production Affects Biofilm Architecture in Pseudomonas aeruginosa PAO1 , 2003, Journal of bacteriology.

[23]  Donald A. Goldmann,et al.  Immunochemical Properties of the Staphylococcal Poly-N-Acetylglucosamine Surface Polysaccharide , 2002, Infection and Immunity.

[24]  R. Kolter,et al.  Pseudomonas-Candida Interactions: An Ecological Role for Virulence Factors , 2002, Science.

[25]  S. Falkow,et al.  Caenorhabditis elegans: Plague bacteria biofilm blocks food intake , 2002, Nature.

[26]  Frederick M. Ausubel,et al.  Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation , 2002, Nature.

[27]  F. Götz Staphylococcus and biofilms , 2002, Molecular microbiology.

[28]  J. Mattick,et al.  Extracellular DNA required for bacterial biofilm formation. , 2002, Science.

[29]  Bonnie L. Bassler,et al.  Quorum-sensing regulators control virulence gene expression in Vibrio cholerae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  C. Solano,et al.  Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose , 2002, Molecular microbiology.

[31]  D. Amikam,et al.  Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. , 2001, FEMS microbiology letters.

[32]  R. Losick,et al.  Fruiting body formation by Bacillus subtilis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Nataro,et al.  Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli , 2001, Molecular microbiology.

[34]  J. Ghigo Natural conjugative plasmids induce bacterial biofilm development , 2001, Nature.

[35]  J. Costerton,et al.  Antibiotic resistance of bacteria in biofilms , 2001, The Lancet.

[36]  S. Lory,et al.  The chaperone/usher pathways of Pseudomonas aeruginosa: Identification of fimbrial gene clusters (cup) and their involvement in biofilm formation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  I. Sutherland,et al.  The biofilm matrix--an immobilized but dynamic microbial environment. , 2001, Trends in microbiology.

[38]  M. Rohde,et al.  The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix , 2001, Molecular microbiology.

[39]  G. O’Toole,et al.  Microbial Biofilms: from Ecology to Molecular Genetics , 2000, Microbiology and Molecular Biology Reviews.

[40]  J. Ramos,et al.  Genetic Analysis of Functions Involved in Adhesion of Pseudomonas putida to Seeds , 2000, Journal of bacteriology.

[41]  J. Banfield,et al.  An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. , 2000, Science.

[42]  S. Hultgren,et al.  Bacterial pili: molecular mechanisms of pathogenesis. , 2000, Current opinion in microbiology.

[43]  K. M. Lee,et al.  Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[44]  G. Schoolnik,et al.  Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[45]  B. Christensen,et al.  Molecular tools for study of biofilm physiology. , 1999, Methods in enzymology.

[46]  G. Schoolnik,et al.  Vibrio cholerae O 1 El Tor : Identification of a gene cluster required for the rugose colony type , exopolysaccharide production , chlorine resistance , and biofilm formation , 1999 .

[47]  R. Kolter,et al.  Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development , 1998, Molecular microbiology.

[48]  Peter Ross,et al.  Three cdg Operons Control Cellular Turnover of Cyclic Di-GMP in Acetobacter xylinum: Genetic Organization and Occurrence of Conserved Domains in Isoenzymes , 1998, Journal of bacteriology.

[49]  J. Costerton,et al.  The involvement of cell-to-cell signals in the development of a bacterial biofilm. , 1998, Science.

[50]  Roberto Kolter,et al.  Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis , 1998, Molecular microbiology.

[51]  Hui Wu,et al.  Isolation and characterization of Fap1, a fimbriae‐associated adhesin of Streptococcus parasanguis FW213 , 1998, Molecular microbiology.

[52]  M. Jobling,et al.  Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene , 1997, Molecular microbiology.

[53]  I. Henderson,et al.  Phase-variable outer membrane proteins in Escherichia coli. , 1996, FEMS immunology and medical microbiology.

[54]  D. Mack,et al.  The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis , 1996, Journal of bacteriology.

[55]  G. Spatafora,et al.  The fimA locus of Streptococcus parasanguis encodes an ATP‐binding membrane transport system , 1995, Molecular microbiology.

[56]  J. Heesemann,et al.  Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intercellular adhesin , 1994, Infection and immunity.

[57]  P. Kolenbrander,et al.  Adhere today, here tomorrow: oral bacterial adherence , 1993, Journal of bacteriology.

[58]  R Mayer,et al.  Cellulose biosynthesis and function in bacteria. , 1991, Microbiological reviews.

[59]  D. Martin,et al.  Mucoid Pseudomonas aeruginosa in cystic fibrosis: mutations in the muc loci affect transcription of the algR and algD genes in response to environmental stimuli , 1990, Molecular microbiology.

[60]  B. Eisenstein Phase variation of type 1 fimbriae in Escherichia coli is under transcriptional control. , 1981, Science.

[61]  F. Andrewes Studies in group-agglutination I. The salmonella group and its antigenic structure† , 1922 .