A Shape-Newton approach to the problem of covering with identical balls

The problem of covering a region of the plane with a fixed number of minimum-radius identical balls is studied in the present work. An explicit construction of bi-Lipschitz mappings is provided to model small perturbations of the union of balls. This allows us to obtain analytical expressions for firstand second-order derivatives using nonsmooth shape optimization techniques under appropriate regularity assumptions. Singular cases are also studied using asymptotic analysis. For the case of regions given by the union of disjoint convex polygons, algorithms based on Voronoi diagrams that do not rely on approximations are given to compute the derivatives. Extensive numerical experiments illustrate the capabilities and limitations of the introduced approach.

[1]  Antoine Laurain,et al.  Structure of shape derivatives in nonsmooth domains and applications , 2005 .

[2]  Mathématiques Sweep Line Algorithm , 2010, Encyclopedia of GIS.

[3]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[4]  A. Laurain Distributed and boundary expressions of first and second order shape derivatives in nonsmooth domains , 2020 .

[5]  A. Heppes,et al.  Covering a Rectangle With Equal Circles , 1997 .

[6]  Hiroshi Imai,et al.  Voronoi Diagram in the Laguerre Geometry and its Applications , 1985, SIAM J. Comput..

[7]  K. Sturm,et al.  Distributed shape derivative via averaged adjoint method and applications , 2015, 1509.01816.

[8]  Lawrence Mitchell,et al.  Automated shape differentiation in the Unified Form Language , 2018, Structural and Multidisciplinary Optimization.

[9]  P. C. Schuur,et al.  Improved Coverings of a Square with Six and Eight Equal Circles , 1996, Electron. J. Comb..

[10]  Ernesto G. Birgin,et al.  A Shape Optimization Approach to the Problem of Covering a Two-Dimensional Region with Minimum-Radius Identical Balls , 2021, SIAM J. Sci. Comput..

[11]  José Mario Martínez,et al.  On Augmented Lagrangian Methods with General Lower-Level Constraints , 2007, SIAM J. Optim..

[12]  Leon Simon,et al.  Lectures on Geometric Measure Theory , 1984 .

[13]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[14]  Matthew MacDonald,et al.  Shapes and Geometries , 1987 .

[15]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[16]  Marc Dambrine,et al.  About stability of equilibrium shapes , 2000 .

[17]  Volker Schulz,et al.  Impulse Response Approximations of Discrete Shape Hessians with Application in CFD , 2009, SIAM J. Control. Optim..

[18]  J. Mark Keil,et al.  Decomposing a Polygon into Simpler Components , 1985, SIAM J. Comput..

[19]  Stephan Schmidt,et al.  Weak and Strong Form Shape Hessians and Their Automatic Generation , 2018, SIAM J. Sci. Comput..

[20]  B. Joe,et al.  GEOMPACK — a software package for the generation of meshes using geometric algorithms☆ , 1991 .

[21]  E. G. Birgin,et al.  Complexity and performance of an Augmented Lagrangian algorithm , 2019, Optim. Methods Softw..

[22]  José Mario Martínez,et al.  Practical augmented Lagrangian methods for constrained optimization , 2014, Fundamentals of algorithms.

[23]  M. Dambrine,et al.  On stability analysis in shape optimisation : critical shapes for Neumann problem 1 , 2003 .

[24]  José Mario Martínez,et al.  Large-Scale Active-Set Box-Constrained Optimization Method with Spectral Projected Gradients , 2002, Comput. Optim. Appl..

[25]  Michel Dambrine,et al.  On Second Order Shape Optimization Methods for Electrical Impedance Tomography , 2007, SIAM J. Control. Optim..

[26]  Michael Hintermüller,et al.  A Second Order Shape Optimization Approach for Image Segmentation , 2004, SIAM J. Appl. Math..

[27]  K. Nurmela,et al.  COVERING A SQUARE WITH UP TO 30 EQUAL CIRCLES , 2000 .

[28]  Kari J. Nurmela,et al.  Conjecturally Optimal Coverings of an Equilateral Triangle with Up to 36 Equal Circles , 2000, Exp. Math..

[29]  Yu. G. Stoyan,et al.  Covering a compact polygonal set by identical circles , 2010, Comput. Optim. Appl..

[30]  Veer N. Vatsa,et al.  A Preconditioning Method for Shape Optimization Governed by the Euler Equations , 1998 .

[31]  Antonio A. F. Oliveira,et al.  Optimal Covering of Plane Domains by Circles Via Hyperbolic Smoothing , 2005, J. Glob. Optim..

[32]  Ellis Horowitz,et al.  Polygon Clipping: Analysis and Experiences , 1991, Theoretical Studies in Computer Science.

[33]  H. Melissen,et al.  Loosest Circle Coverings of an Equilateral Triangle , 1997 .

[34]  D. O. Santos,et al.  An Augmented Lagrangian algorithm for nonlinear semidefinite programming applied to the covering problem , 2019, Computational and Applied Mathematics.

[35]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[36]  Helmut Harbrecht,et al.  A regularized Newton method in electrical impedance tomography using shape Hessian information , 2005 .

[37]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[38]  Ivan E. Sutherland,et al.  Reentrant polygon clipping , 1974, Commun. ACM.