Polymer “Clicking” by CuAAC Reactions

The CuAAC "click" reaction has developed as one of the most useful and widely employed reactions in ligation within polymer chemistry. This is due to the unique properties of the Cu(I) catalysis which renders the reaction quantitative even at low concentrations, orthogonal with other chemistries and extremely robust. The formed triazole on the other hand is of intermediate polarity and chemically and biochemically "invisible", and the CuAAC provides the ideal "click" reaction for stitching together polymer architectures of unprecedended complexity as was it molecular LEGO. The CuAAC "clicking" in polymer chemistry is increasing exponentially and lead to highly defined polymer materials with novel properties.

[1]  C. Hawker,et al.  Structurally diverse dendritic libraries : A highly efficient functionalization approach using Click chemistry , 2005 .

[2]  Donald A Tomalia,et al.  Dendrimers in biomedical applications--reflections on the field. , 2005, Advanced drug delivery reviews.

[3]  Krzysztof Matyjaszewski,et al.  Synthesis of molecular brushes by "grafting onto" method: combination of ATRP and click reactions. , 2007, Journal of the American Chemical Society.

[4]  K. Burgess,et al.  Base dependence in copper-catalyzed Huisgen reactions: efficient formation of bistriazoles. , 2007, Angewandte Chemie.

[5]  Jae Wook Lee,et al.  Convergent synthesis of PAMAM dendrimers using click chemistry of azide-functionalized PAMAM dendrons , 2006 .

[6]  F. Švec,et al.  "Click chemistry" in the preparation of porous polymer-based particulate stationary phases for mu-HPLC separation of peptides and proteins. , 2006, Analytical chemistry.

[7]  J. Moses,et al.  The growing applications of click chemistry. , 2007, Chemical Society reviews.

[8]  Shaurya Prakash,et al.  "Click" modification of silica surfaces and glass microfluidic channels. , 2007, Analytical chemistry.

[9]  Hua-ming Li,et al.  Functionalization of single-walled carbon nanotubes with well-defined polystyrene by "click" coupling. , 2005, Journal of the American Chemical Society.

[10]  D. Speijer,et al.  1,2,3-Triazoles as peptide bond isosteres: synthesis and biological evaluation of cyclotetrapeptide mimics. , 2007, Organic & biomolecular chemistry.

[11]  H. Börner,et al.  Combining ATRP and “Click” Chemistry: a Promising Platform toward Functional Biocompatible Polymers and Polymer Bioconjugates , 2006 .

[12]  R. Silverman,et al.  Delivery of 2-5A cargo into living cells using the Tat cell penetrating peptide: 2-5A-tat. , 2006, Bioorganic & medicinal chemistry.

[13]  P. Arora,et al.  Solution- and solid-phase synthesis of triazole oligomers that display protein-like functionality. , 2007, The Journal of organic chemistry.

[14]  M. Finn,et al.  Kinetic resolution by copper-catalyzed azide–alkyne cycloaddition , 2005 .

[15]  K. Matyjaszewski,et al.  Synthesis of 3‐Arm Star Block Copolymers by Combination of “Core‐First” and “Coupling‐Onto” Methods Using ATRP and Click Reactions , 2007 .

[16]  R. Luxenhofer,et al.  Click Chemistry with Poly(2-oxazoline)s , 2006 .

[17]  Chi‐Huey Wong,et al.  Synthesis of sugar arrays in microtiter plate. , 2002, Journal of the American Chemical Society.

[18]  H. Paik,et al.  Synthesis and characterization of low molecular weight poly(methyl acrylate)-b-polystyrene by a combination of ATRP and click coupling method , 2007 .

[19]  Dong Wang,et al.  Efficient synthesis of linear multifunctional poly(ethylene glycol) by copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition. , 2007, Biomacromolecules.

[20]  Lei Tao,et al.  Synthesis of azide/alkyne-terminal polymers and application for surface functionalisation through a [2 + 3] Huisgen cycloaddition process, "click chemistry". , 2007, Soft matter.

[21]  K. Matyjaszewski,et al.  Gradient polymer elution chromatographic analysis of α,ω-dihydroxypolystyrene synthesized via ATRP and click chemistry , 2005 .

[22]  J. V. van Hest,et al.  Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers. , 2005, Chemical communications.

[23]  Yan Zhao,et al.  Efficient synthesis of water-soluble calixarenes using click chemistry. , 2005, Organic letters.

[24]  E. Gallo,et al.  Coordination chemistry of organic azides and amination reactions catalyzed by transition metal complexes , 2006 .

[25]  C. Fahrni,et al.  A Fluorogenic Probe for the Copper(I)-Catalyzed Azide−Alkyne Ligation Reaction: Modulation of the Fluorescence Emission via 3(n,π*)−1(π,π*) Inversion , 2004 .

[26]  C. Hawker,et al.  Orthogonal approaches to the simultaneous and cascade functionalization of macromolecules using click chemistry. , 2005, Journal of the American Chemical Society.

[27]  Jae Wook Lee,et al.  Facile approach for diblock codendrimers by fusion between Fréchet dendrons and PAMAM dendrons. , 2006, The Journal of organic chemistry.

[28]  Jae Wook Lee,et al.  Convergent Synthesis of Symmetrical and Unsymmetrical PAMAM Dendrimers , 2006 .

[29]  Yongming Chen,et al.  Synthesis of well‐defined macromonomers by the combination of atom transfer radical polymerization and a click reaction , 2006 .

[30]  Jae Wook Lee,et al.  Synthesis of Symmetric and Unsymmetric Triazole Dendrimers via Dipolar Cycloaddition Reaction , 2006 .

[31]  J. Lutz,et al.  In Situ Functionalization of Thermoresponsive Polymeric Micelles using the “Click” Cycloaddition of Azides and Alkynes , 2007 .

[32]  Hua-Li Qin,et al.  Regioselective synthesis of 1,2,3-triazole derivatives via 1,3-dipolar cycloaddition reactions in water. , 2003, Chemical communications.

[33]  Ji-Hye Jung,et al.  Synthesis of glycidyl triazolyl polymers using click chemistry , 2007 .

[34]  É. Cloutet,et al.  Click assembly of 1,2,3-triazole-linked dendrimers, including ferrocenyl dendrimers, which sense both oxo anions and metal cations. , 2007, Angewandte Chemie.

[35]  K. Houk,et al.  Activation Energies and Reaction Energetics for 1,3-Dipolar Cycloadditions of Hydrazoic Acid with C-C and C-N Multiple Bonds from High-Accuracy and Density Functional Quantum Mechanical Calculations , 2005 .

[36]  M. Malacria,et al.  A general strategy for ligation of organic and biological molecules to Dawson and Keggin polyoxotungstates. , 2007, Organic letters.

[37]  D. Bergbreiter,et al.  “Click”-Based Covalent Layer-by-Layer Assembly on Polyethylene Using Water-Soluble Polymeric Reagents , 2007 .

[38]  H. Hiemstra,et al.  CuI‐Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective , 2005 .

[39]  Scott M. Grayson,et al.  An efficient route to well-defined macrocyclic polymers via "click" cyclization. , 2006, Journal of the American Chemical Society.

[40]  Jeremiah A. Johnson,et al.  Synthesis of degradable model networks via ATRP and click chemistry. , 2006, Journal of the American Chemical Society.

[41]  V. Ladmiral,et al.  Synthesis of neoglycopolymers by a combination of "click chemistry" and living radical polymerization. , 2006, Journal of the American Chemical Society.

[42]  Yiran Wang,et al.  C‐Terminal Incorporation of Bio‐Orthogonal Azide Groups into a Protein and Preparation of Protein–Oligodeoxynucleotide Conjugates by CuI‐Catalyzed Cycloaddition , 2007, Chembiochem : a European journal of chemical biology.

[43]  Y. Yagcı,et al.  Mechanistic transformations involving living and controlled/living polymerization methods , 2006 .

[44]  D. Díaz,et al.  Click chemistry in materials synthesis. III. Metal‐adhesive polymers from Cu(I)‐catalyzed azide–alkyne cycloaddition , 2007 .

[45]  J. Cintrat,et al.  Click chemistry with ynamides , 2006 .

[46]  Todd Emrick,et al.  PEG- and peptide-grafted aliphatic polyesters by click chemistry. , 2005, Journal of the American Chemical Society.

[47]  E. Fan,et al.  Solid phase synthesis of peptidotriazoles with multiple cycles of triazole formation , 2006 .

[48]  S. Schaus,et al.  Synthesis of complex alkoxyamines using a polymer-supported N-hydroxyphthalimide , 2004 .

[49]  A. Lane,et al.  A Very Stable Cyclic DNA Miniduplex with Just Two Base Pairs , 2008, Chembiochem : a European journal of chemical biology.

[50]  M. Tuominen,et al.  Intrinsically conducting polymers and copolymers containing triazole moieties , 2007 .

[51]  K. Matyjaszewski,et al.  Highly Efficient “Click” Functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP , 2005 .

[52]  T. Reineke,et al.  Effects of trehalose click polymer length on pDNA complex stability and delivery efficacy. , 2007, Biomaterials.

[53]  Q. Wang,et al.  Selective dye-labeling of newly synthesized proteins in bacterial cells. , 2005, Journal of the American Chemical Society.

[54]  J. V. van Maarseveen,et al.  Click chemistry as a route to cyclic tetrapeptide analogues: synthesis of cyclo-[Pro-Val-psi(triazole)-Pro-Tyr]. , 2006, Organic letters.

[55]  U. Schubert,et al.  Clicking polymers: a straightforward approach to novel macromolecular architectures. , 2007, Chemical Society reviews.

[56]  H. Komber,et al.  Cycloaddition Reactions and Dendritic Polymer Architectures – A Perfect Match , 2007 .

[57]  Khalid El Akri,et al.  A highly efficient microwave-assisted solvent-free synthesis of α- and β-2′-deoxy-1,2,3-triazolyl-nucleosides , 2006 .

[58]  Jöns Hilborn,et al.  Poly(vinyl alcohol)-Based Hydrogels Formed by “Click Chemistry” , 2006 .

[59]  Juan Correa,et al.  "Clickable" PEG-dendritic block copolymers. , 2006, Biomacromolecules.

[60]  R. Breinbauer,et al.  Azide–Alkyne Coupling: A Powerful Reaction for Bioconjugate Chemistry , 2003, Chembiochem : a European journal of chemical biology.

[61]  Philipp Holzer,et al.  Click chemistry in materials synthesis. 1. Adhesive polymers from copper‐catalyzed azide‐alkyne cycloaddition , 2004 .

[62]  Sukbok Chang,et al.  A facile access to N-sulfonylimidates and their synthetic utility for the transformation to amidines and amides. , 2006, Organic letters.

[63]  B. Attali,et al.  Enzymatic activation of second-generation dendritic prodrugs: Conjugation of self-immolative dendrimers with poly(ethylene glycol) via click chemistry. , 2006, Bioconjugate chemistry.

[64]  E. Schuman,et al.  Fluorescence visualization of newly synthesized proteins in mammalian cells. , 2006, Angewandte Chemie.

[65]  S. Chandrasekhar,et al.  Inter and intramolecular copper(I)-catalyzed 1,3-dipolar cycloaddition of azido-alkynes: synthesis of furanotriazole macrocycles ☆ , 2007 .

[66]  K. Kirshenbaum,et al.  Click to fit: versatile polyvalent display on a peptidomimetic scaffold. , 2005, Organic letters.

[67]  W. Binder,et al.  Combining Ring-Opening Metathesis Polymerization (ROMP) with Sharpless-Type “Click” Reactions: An Easy Method for the Preparation of Side Chain Functionalized Poly(oxynorbornenes) , 2004 .

[68]  Louis-Sebastian Sonntag,et al.  Azidoproline containing helices: stabilization of the polyproline II structure by a functionalizable group. , 2007, Journal of the American Chemical Society.

[69]  Y. Pommier,et al.  Biotinylated biphenyl ketone-containing 2,4-dioxobutanoic acids designed as HIV-1 integrase photoaffinity ligands. , 2006, Bioorganic & medicinal chemistry.

[70]  Chi‐Huey Wong,et al.  High-throughput identification of fucosyltransferase inhibitors using carbohydrate microarrays. , 2004, Bioorganic & medicinal chemistry letters.

[71]  Polynuclear complexes of copper(I) halides: coordination chemistry and catalytic transformations of alkynes , 2000 .

[72]  R. Liskamp,et al.  Application of the 1,3-Dipolar Cycloaddition Reaction in Chemical Biology: Approaches Toward Multivalent Carbohydrates and Peptides and Peptide-Based Polymers , 2007 .

[73]  J. Qin,et al.  Convenient attachment of highly polar azo chromophore moieties to disubstituted polyacetylene through polymer reactions by using click chemistry , 2007 .

[74]  J. Herscovici,et al.  Reusable polymer-supported catalyst for the [3+2] Huisgen cycloaddition in automation protocols. , 2006, Organic letters.

[75]  P. Gmeiner,et al.  Click linker: efficient and high-yielding synthesis of a new family of SPOS resins by 1,3-dipolar cycloaddition. , 2003, Organic letters.

[76]  Yongming Chen,et al.  Divergent synthesis of dendrimer‐like macromolecules through a combination of atom transfer radical polymerization and click reaction , 2007 .

[77]  J. Reek,et al.  Click-chemistry as an efficient synthetic tool for the preparation of novel conjugated polymers. , 2005, Chemical communications.

[78]  K. Sharpless,et al.  Polytriazoles as copper(I)-stabilizing ligands in catalysis. , 2004, Organic letters.

[79]  M. Finn,et al.  Mechanism of the ligand-free CuI-catalyzed azide-alkyne cycloaddition reaction. , 2005, Angewandte Chemie.

[80]  T. Brown,et al.  Template-directed oligonucleotide strand ligation, covalent intramolecular DNA circularization and catenation using click chemistry. , 2007, Journal of the American Chemical Society.

[81]  C. Jimeno,et al.  Polystyrene-supported hydroxyproline: an insoluble, recyclable organocatalyst for the asymmetric aldol reaction in water. , 2006, Organic letters.

[82]  A. Caminade,et al.  Synthesis and application of phosphorus dendrimer immobilized azabis(oxazolines). , 2007, Organic letters.

[83]  M. Finn,et al.  Click chemistry in materials synthesis. II. Acid‐swellable crosslinked polymers made by copper‐catalyzed azide–alkyne cycloaddition , 2006 .

[84]  Thomas Carell,et al.  Click chemistry as a reliable method for the high-density postsynthetic functionalization of alkyne-modified DNA. , 2006, Organic letters.

[85]  Jae Wook Lee,et al.  Synthesis of Fréchet type dendritic benzyl propargyl ether and Fréchet type triazole dendrimer , 2006 .

[86]  S. Yao,et al.  Expanded utility of the native chemical ligation reaction. , 2004, Chemistry.

[87]  M. Finn,et al.  Discovery and characterization of catalysts for azide-alkyne cycloaddition by fluorescence quenching. , 2004, Journal of the American Chemical Society.

[88]  K. Sakurai,et al.  Click Chemistry on Curdlan: A Regioselective and Quantitative Approach to Develop Artificial β-1,3-Glucans with Various Functional Appendages , 2006 .

[89]  Sukbok Chang,et al.  Copper-catalyzed hydrative amide synthesis with terminal alkyne, sulfonyl azide, and water. , 2005, Journal of the American Chemical Society.

[90]  J. Eichler,et al.  Peptide ligation through click chemistry for the generation of assembled and scaffolded peptides , 2005 .

[91]  A. Ustinov,et al.  A convenient ‘click chemistry’ approach to perylene diimide–oligonucleotide conjugates , 2008 .

[92]  K. Kacprzak Efficient one-pot synthesis of 1,2,3-triazoles from benzyl and alkyl halides , 2005 .

[93]  B. Straub µ-Acetylide and µ-alkenylidene ligands in “click” triazole syntheses , 2007 .

[94]  B. Voit The potential of cycloaddition reactions in the synthesis of dendritic polymers , 2007 .

[95]  E. Pittenauer,et al.  Telechelic Poly(N-isopropylacrylamides) via Nitroxide-Mediated Controlled Polymerization and “Click” Chemistry: Livingness and “Grafting-from” Methodology , 2007 .

[96]  W. Binder,et al.  Functionalized poly(oxanorbornene)‐block‐copolymers: Preparation via ROMP/click‐methodology , 2007 .

[97]  C. Hawker,et al.  Role of Architecture and Molecular Weight in the Formation of Tailor-Made Ultrathin Multilayers Using Dendritic Macromolecules and Click Chemistry , 2007 .

[98]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[99]  R. Hsung,et al.  Tandem azidination- and hydroazidination-Huisgen [3 + 2] cycloadditions of ynamides. Synthesis of chiral amide-substituted triazoles. , 2006, Organic & biomolecular chemistry.

[100]  Günter Szeimies,et al.  1.3-Dipolare Cycloadditionen, XXXII. Kinetik der Additionen organischer Azide an CC-Mehrfachbindungen , 1967 .

[101]  M. Finn,et al.  Accelerated bioorthogonal conjugation: a practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold. , 2005, Bioconjugate chemistry.

[102]  R. Hsung,et al.  Copper Salt-Catalyzed Azide-[3 + 2] Cycloadditions of Ynamides and Bis-Ynamides , 2006 .

[103]  B. Westermann,et al.  A short route for the synthesis of "sweet" macrocycles via a click-dimerization-ring-closing metathesis approach. , 2005, Chemical communications.

[104]  W. Binder,et al.  ‘Click’ Chemistry in Polymer and Materials Science , 2007 .

[105]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[106]  R. Jerome,et al.  Combination of ring-opening polymerization and "click" chemistry for the synthesis of an amphiphilic tadpole-shaped poly(epsilon-caprolactone) grafted by PEO , 2007 .

[107]  C. Hawker,et al.  Facile syntheses of surface‐functionalized micelles and shell cross‐linked nanoparticles , 2006 .

[108]  A. Bogdan,et al.  A general approach to creating soluble catalytic polymers heterogenized in microcapsules. , 2007, Organic letters.

[109]  K. Sharpless,et al.  Copper-catalyzed synthesis of N-sulfonyl-1,2,3-triazoles: controlling selectivity. , 2007, Angewandte Chemie.

[110]  P. Schultz,et al.  In vivo incorporation of an alkyne into proteins in Escherichia coli. , 2005, Bioorganic & medicinal chemistry letters.

[111]  J. V. Hest,et al.  Modular synthesis of ABC type block copolymers by “click” chemistry , 2007 .

[112]  C. Jimeno,et al.  Highly enantioselective Michael additions in water catalyzed by a PS-supported pyrrolidine. , 2007, Organic letters.

[113]  N. Devaraj,et al.  Copper Catalyzed Azide‐Alkyne Cycloadditions on Solid Surfaces: Applications and Future Directions , 2007 .

[114]  C. Hawker,et al.  Shell click-crosslinked (SCC) nanoparticles: a new methodology for synthesis and orthogonal functionalization. , 2005, Journal of the American Chemical Society.

[115]  T. Durek,et al.  Protein semi-synthesis: new proteins for functional and structural studies. , 2005, Biomolecular engineering.

[116]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[117]  K. Kirshenbaum,et al.  Clickity-click: highly functionalized peptoid oligomers generated by sequential conjugation reactions on solid-phase support. , 2006, Organic & biomolecular chemistry.

[118]  F. Seela,et al.  DNA Containing Side Chains with Terminal Triple Bonds: Base‐Pair Stability and Functionalization of Alkynylated Pyrimidines and 7‐Deazapurines , 2006, Chemistry & biodiversity.

[119]  Deyun Ma,et al.  Synthesis of ABC-type miktoarm star polymers by “click” chemistry, ATRP and ROP , 2007 .

[120]  Morten Meldal,et al.  Cu-catalyzed azide-alkyne cycloaddition. , 2008, Chemical reviews.

[121]  C. Hawker,et al.  Dendronized linear polymers via "click chemistry". , 2004, Journal of the American Chemical Society.

[122]  H. Komber,et al.  Synthesis of functionalized NMP initiators for click chemistry: A versatile method for the preparation of functionalized polymers and block copolymers , 2007 .

[123]  Jae Wook Lee,et al.  Synthesis of azide-functionalized PAMAM dendrons at the focal point and their application for synthesis of PAMAM-like dendrimers , 2006 .

[124]  C. Hawker,et al.  Functionalization of Micelles and Shell Cross-linked Nanoparticles Using Click Chemistry , 2005 .

[125]  C. Hawker,et al.  Doubly-dendronized linear polymers. , 2005, Chemical communications.

[126]  Craig J. Hawker,et al.  The Convergence of Synthetic Organic and Polymer Chemistries , 2005, Science.

[127]  M. Finn,et al.  Head-to-tail peptide cyclodimerization by copper-catalyzed azide-alkyne cycloaddition. , 2005, Angewandte Chemie.

[128]  K. Matyjaszewski,et al.  Catalyst Performance in “Click” Coupling Reactions of Polymers Prepared by ATRP: Ligand and Metal Effects , 2006 .

[129]  A. Imberty,et al.  Fucosylated pentaerythrityl phosphodiester oligomers (PePOs): automated synthesis of DNA-based glycoclusters and binding to Pseudomonas aeruginosa lectin (PA-IIL). , 2007, Bioconjugate chemistry.

[130]  P. Fanwick,et al.  Dendronized diruthenium compounds via the copper(I)-catalyzed click reaction. , 2007, Inorganic chemistry.

[131]  Todd Emrick,et al.  Soluble camptothecin derivatives prepared by click cycloaddition chemistry on functional aliphatic polyesters. , 2007, Bioconjugate chemistry.

[132]  H. Waldmann,et al.  Solid-phase based synthesis of jasplakinolide analogs by intramolecular azide-alkyne cycloadditions. , 2007, Chemical communications.

[133]  A. Dondoni Triazole: the keystone in glycosylated molecular architectures constructed by a click reaction. , 2007, Chemistry, an Asian journal.

[134]  Yoav Eichen,et al.  Directed DNA metallization. , 2006, Journal of the American Chemical Society.

[135]  Chi‐Huey Wong,et al.  Microtiter plate based chemistry and in situ screening: a useful approach for rapid inhibitor discovery. , 2006, Organic & biomolecular chemistry.

[136]  P. Bertrand,et al.  Click chemistry with O-dimethylpropargylcarbamate for preparation of pH-sensitive functional groups. A case study. , 2007, The Journal of organic chemistry.

[137]  Jae Wook Lee,et al.  A facile route to triazole dendrimers via click chemistry linking tripodal acetylene and dendrons , 2005 .

[138]  Jae Wook Lee,et al.  Convergent Synthesis of Triazole Dendrimers via Click Chemistry Using Tripodal Core , 2005 .

[139]  V. Rotello,et al.  Model systems for flavoenzyme activity: site-isolated redox behavior in flavin-functionalized random polystyrene copolymers. , 2005, Organic letters.

[140]  Rachel K. O'Reilly,et al.  Dendrimers Clicked Together Divergently , 2005 .

[141]  Qian Wang,et al.  Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. , 2003, Journal of the American Chemical Society.

[142]  Chun Xing Li,et al.  'Click chemistry' on polysaccharides: a convenient, general, and monitorable approach to develop (1-->3)-beta-D-glucans with various functional appendages. , 2005, Carbohydrate research.

[143]  R. Huisgen Kinetics and reaction mechanisms: selected examples from the experience of forty years , 1989 .

[144]  S. Hvilsted,et al.  Novel Polymers with a High Carboxylic Acid Loading , 2006 .

[145]  R. Fisher,et al.  Application of azide-alkyne cycloaddition 'click chemistry' for the synthesis of Grb2 SH2 domain-binding macrocycles. , 2006, Bioorganic & medicinal chemistry letters.

[146]  O. Altintas,et al.  One-Pot Synthesis of ABC Type Triblock Copolymers via in situ Click [3 + 2] and Diels−Alder [4 + 2] Reactions , 2007 .

[147]  U. Bunz,et al.  Click Chemistry as a Powerful Tool for the Construction of Functional Poly(p-phenyleneethynylene)s: Comparison of Pre- and Postfunctionalization Schemes , 2005 .

[148]  D. Díaz,et al.  Study of high glass transition temperature thermosets made from the copper(I)-catalyzed azide -alkyne cycloaddition reaction , 2007 .

[149]  Yong-ming Wu,et al.  Regioselective synthesis of fluoroalkylated [1,2,3]-triazoles by Huisgen cycloaddition , 2004 .

[150]  Alan E. Rowan,et al.  From (bio)Molecules to Biohybrid Materials with the Click Chemistry Approach , 2007 .

[151]  B. Voit,et al.  New Photolabile Functional Polymers for Patterning onto Gold Obtained by Click Chemistry , 2007 .

[152]  B. Sumerlin,et al.  Versatile Pathway to Functional Telechelics via RAFT Polymerization and Click Chemistry , 2007 .

[153]  Junwei Yang,et al.  Well‐controlled polymerization of 2‐azidoethyl methacrylate at near room temperature and click functionalization , 2007 .

[154]  Yong-ming Wu,et al.  Regiospecific synthesis of 1,4,5-trisubstituted-1,2,3-triazole via one-pot reaction promoted by copper(I) salt , 2005 .

[155]  G. Marriott,et al.  Synthesis and characterization of the 7-(4-aminomethyl-1H-1,2,3-triazol-1-yl) analogue of kabiramide C. , 2005, Journal of natural products.

[156]  J. Lahann,et al.  Click Chemistry: Versatility and Control in the Hands of Materials Scientists , 2007 .

[157]  V. Lynch,et al.  FRET induced by an 'allosteric' cycloaddition reaction regulated with exogenous inhibitor and effectors , 2004 .

[158]  R. Breinbauer,et al.  The Staudinger ligation-a gift to chemical biology. , 2004, Angewandte Chemie.

[159]  Yong-ming Wu,et al.  Studies on New Strategies for the Synthesis of Oligomeric 1,2,3-Triazoles , 2006 .

[160]  Jae Wook Lee,et al.  Convergent Synthesis of PAMAM-like Dendrimers from Azide-functionalized PAMAM Dendrons , 2006 .

[161]  C. Barner‐Kowollik,et al.  Graft block copolymers of propargyl methacrylate and vinyl acetate via a combination of RAFT/MADIX and click chemistry: Reaction analysis , 2008 .

[162]  C. Hawker,et al.  Fluorogenic 1,3-dipolar cycloaddition within the hydrophobic core of a shell cross-linked nanoparticle. , 2006, Chemistry.

[163]  D. Taton,et al.  A versatile synthetic approach to polypeptide based rod : coil block copolymers by click chemistry , 2007 .

[164]  C. Hawker,et al.  Multivalent, bifunctional dendrimers prepared by click chemistry. , 2005, Chemical communications.

[165]  O. Altintas,et al.  A3‐type star polymers via click chemistry , 2006 .

[166]  C. Hawker,et al.  Preparation of orthogonally-functionalized core Click cross-linked nanoparticles , 2007 .

[167]  V. Fokin,et al.  One-pot synthesis of 1,4-disubstituted 1,2,3-triazoles from in situ generated azides. , 2004, Organic letters.

[168]  B. Sumerlin,et al.  An Efficient Route to Macromonomers via ATRP and Click Chemistry , 2006 .

[169]  N. Cameron,et al.  Recent advances in the synthesis of well-defined glycopolymers , 2007 .

[170]  B. Kiskan,et al.  Thermally Curable Polystyrene via Click Chemistry , 2007 .

[171]  J. Lietard,et al.  New strategies for cyclization and bicyclization of oligonucleotides by click chemistry assisted by microwaves. , 2008, The Journal of organic chemistry.

[172]  J. Hedrick,et al.  Synthesis of well-defined hydrogel networks using click chemistry. , 2006, Chemical communications.

[173]  W. King,et al.  1,3-Dipolar Cycloaddition for the Generation of Nanostructured Semiconductors by Heated Probe Tips , 2006 .

[174]  B. Frisch,et al.  Targeted liposomes: convenient coupling of ligands to preformed vesicles using "click chemistry". , 2006, Bioconjugate chemistry.

[175]  O. Altintas,et al.  ABC-type hetero-arm star terpolymers through click chemistry , 2006 .

[176]  V. Fokin,et al.  Practical synthesis of amides from in situ generated copper(I) acetylides and sulfonyl azides. , 2006, Angewandte Chemie.

[177]  A. Oyelere,et al.  Heterogeneous diazo-transfer reaction: a facile unmasking of azide groups on amine-functionalized insoluble supports for solid-phase synthesis. , 2006, The Journal of organic chemistry.

[178]  F. Seela,et al.  Nucleosides and Oligonucleotides with Diynyl Side Chains: Base Pairing and Functionalization of 2′‐Deoxyuridine Derivatives by the Copper(I)‐Catalyzed AlkyneAzide ‘Click’ Cycloaddition , 2007 .

[179]  A. Michael Ueber die Einwirkung von Diazobenzolimid auf Acetylendicarbonsäuremethylester , 1893 .

[180]  P. Arora,et al.  Nonpeptidic foldamers from amino acids: synthesis and characterization of 1,3-substituted triazole oligomers. , 2005, Journal of the American Chemical Society.

[181]  D. Coady,et al.  N-Heterocyclic Carbenes: Versatile Reagents for Postpolymerization Modification , 2006 .

[182]  R. Liskamp,et al.  Efficient microwave-assisted synthesis of multivalent dendrimeric peptides using cycloaddition reaction (click) chemistry , 2005 .

[183]  D. Burton,et al.  Covalent display of oligosaccharide arrays in microtiter plates. , 2004, Journal of the American Chemical Society.

[184]  P. Gmeiner,et al.  Click chemistry on solid phase: parallel synthesis of N-benzyltriazole carboxamides as super-potent G-protein coupled receptor ligands. , 2006, Journal of combinatorial chemistry.

[185]  C. Moberg,et al.  Polymer‐Bound Pyridine‐Bis(oxazoline). Preparation through Click Chemistry and Evaluation in Asymmetric Catalysis , 2007 .

[186]  T. Heinze,et al.  Click Chemistry with Polysaccharides , 2006 .

[187]  M. Weck,et al.  Functionalization of polymers with phosphorescent iridium complexes via click chemistry. , 2006, Chemical communications.

[188]  S. Armes,et al.  Recent advances in shell cross-linked micelles. , 2007, Chemical communications.

[189]  Craig J Hawker,et al.  Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(i)-catalyzed ligation of azides and alkynes. , 2004, Angewandte Chemie.

[190]  Ó. Lopéz,et al.  Click Chemistry - What’s in a Name? Triazole Synthesis and Beyond , 2007 .

[191]  W. Dehaen,et al.  A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-triazoles via a copper(I)-catalyzed three-component reaction. , 2004, Organic letters.

[192]  C. Jérôme,et al.  Combination of Ring-Opening Polymerization and “Click Chemistry”: Toward Functionalization and Grafting of Poly(ε-caprolactone) , 2007 .

[193]  So Ra Park,et al.  A new solvent system for efficient synthesis of 1,2,3-triazoles , 2006 .

[194]  D. Tirrell,et al.  Presentation and detection of azide functionality in bacterial cell surface proteins. , 2004, Journal of the American Chemical Society.

[195]  C. Jimeno,et al.  Highly enantioselective alpha-aminoxylation of aldehydes and ketones with a polymer-supported organocatalyst. , 2007, Organic letters.

[196]  J. Qin,et al.  An Attempt To Modify Nonlinear Optical Effects of Polyurethanes by Adjusting the Structure of the Chromophore Moieties at the Molecular Level Using “Click” Chemistry , 2006 .

[197]  L. Mespouille,et al.  New poly(acrylic acid) containing segmented copolymer structures by combination of ''click" chemistry and atom transfer radical polymerization , 2007 .

[198]  K. Burgess,et al.  An iterative route to "decorated" ethylene glycol-based linkers. , 2006, Chemical communications.

[199]  P. Gmeiner,et al.  Click chemistry on solid support: synthesis of a new REM resin and application for the preparation of tertiary amines , 2004 .

[200]  Jonas Hafrén,et al.  Heterogeneous ‘Organoclick’ Derivatization of Polysaccharides , 2006 .

[201]  Jean-François Lutz,et al.  1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. , 2007, Angewandte Chemie.

[202]  Krzysztof Matyjaszewski,et al.  Synthesis of Star Polymers by a Combination of ATRP and the “Click” Coupling Method , 2006 .

[203]  F. Caruso,et al.  Assembly of ultrathin polymer multilayer films by click chemistry. , 2006, Journal of the American Chemical Society.

[204]  J. Rieger,et al.  New prospects for the grafting of functional groups onto aliphatic polyesters. Ring-opening polymerization of α- or γ-substituted ε-caprolactone followed by chemical derivatization of the substituents , 2006 .