Weighted A* search - unifying view and application

The A^* algorithm is a well-known heuristic best-first search method. Several performance-accelerated extensions of the exact A^* approach are known. Interesting examples are approximate algorithms where the heuristic function used is inflated by a weight (often referred to as weighted A^*). These methods guarantee a bounded suboptimality. As a technical contribution, this paper presents the previous results related to weighted A^* from authors like Pohl, Pearl, Kim, Likhachev and others in a more condensed and unifying form. With this unified view, a novel general bound on suboptimality of the result is derived. In the case of avoiding any reopening of expanded states, for @e>0, this bound is (1+@e)^@?^N^2^@? where N is an upper bound on an optimal solution length. Binary Decision Diagrams (BDDs) are well-known to AI, e.g. from set-based exploration of sparse-memory and symbolic manipulation of state spaces. The problem of exact or approximate BDD minimization is introduced as a possible new challenge for heuristic search. Like many classical AI domains, this problem is motivated by real-world applications. Several variants of weighted A^* search are applied to problems of BDD minimization and the more classical domains like blocksworld and sliding-tile puzzles. For BDD minimization, the comparison of the evaluated methods also includes previous heuristic and simulation-based methods such as Rudell's hill-climbing based sifting algorithm, Simulated Annealing and Evolutionary Algorithms. A discussion of the results obtained in the different problem domains gives our experiences with weighted A^*, which is of value for the AI practitioner.

[1]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[2]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[3]  I. Wegener,et al.  SIMULATED ANNEALING TO IMPROVE VARIABLE ORDERINGS FOR OBDDsBeate , 1995 .

[4]  Richard E. Korf Optimal Rectangle Packing: New Results , 2004, ICAPS.

[5]  Patrik Haslum,et al.  Admissible Heuristics for Optimal Planning , 2000, AIPS.

[6]  M. Chrzanowska-Jeske,et al.  A regular representation for mapping to fine-grain, locally-connected FPGAs , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[7]  Eric A. Hansen,et al.  Graph Embedding with Constraints , 2009, IJCAI.

[8]  Hermann Kaindl,et al.  A New Approach to Dynamic Weighting , 1992, ECAI.

[9]  Frank Reffel,et al.  Error Detection with Directed Symbolic Model Checking , 1999, World Congress on Formal Methods.

[10]  Tom Bylander,et al.  Complexity Results for Planning , 1991, IJCAI.

[12]  Robert B. Dial,et al.  Algorithm 360: shortest-path forest with topological ordering [H] , 1969, CACM.

[13]  Ketan Kotecha,et al.  A Hybrid Genetic Algorithm for Minimum Vertex Cover Problem , 2003, IICAI.

[14]  Randal E. Bryant,et al.  An Efficient BDD-Based A* Algorithm , 2002 .

[15]  P. P. Chakrabarti,et al.  Heuristic Search in Restricted Memory , 1989, Artif. Intell..

[16]  Richard E. Korf An Improved Algorithm for Optimal Bin Packing , 2003, IJCAI.

[17]  Stefan Edelkamp,et al.  Byte code distance heuristics and trail direction for model checking java programs , 2003 .

[18]  Richard E. Korf,et al.  A Complete Anytime Algorithm for Number Partitioning , 1998, Artif. Intell..

[19]  Stuart J. Russell Efficient Memory-Bounded Search Methods , 1992, ECAI.

[20]  Kobayashi,et al.  Improvement of the A(*) Algorithm for Multiple Sequence Alignment. , 1998, Genome informatics. Workshop on Genome Informatics.

[21]  Paolo Traverso,et al.  Automatic OBDD-Based Generation of Universal Plans in Non-Deterministic Domains , 1998, AAAI/IAAI.

[22]  Simon Richards,et al.  Memory-Efficient Symbolic Heuristic Search , 2006, ICAPS.

[23]  Albert Nymeyer,et al.  Heuristic Search Algorithms Based on Symbolic Data Structures , 2003, Australian Conference on Artificial Intelligence.

[24]  Manfred K. Warmuth,et al.  NxN Puzzle and Related Relocation Problem , 1990, J. Symb. Comput..

[25]  Geoffrey J. Gordon,et al.  ARA : formal analysis , 2003 .

[26]  Ingo Wegener,et al.  Reduction of OBDDs in Linear Time , 1993, Inf. Process. Lett..

[27]  Richard E. Korf,et al.  Planning as Search: A Quantitative Approach , 1987, Artif. Intell..

[28]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[29]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Rina Dechter,et al.  Generalized best-first search strategies and the optimality of A* , 1985, JACM.

[31]  Fausto Giunchiglia,et al.  Planning via Model Checking: A Decision Procedure for AR , 1997, ECP.

[32]  Daniel S. Weld An Introduction to Least Commitment Planning , 1994, AI Mag..

[33]  Ingo Wegener,et al.  Worst case examples for operations on OBDDs , 2000, Inf. Process. Lett..

[34]  Steve Rabin,et al.  AI Game Programming Wisdom , 2002 .

[35]  Shlomo Zilberstein,et al.  Symbolic Generalization for On-line Planning , 2002, UAI.

[36]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[37]  Manfred K. Warmuth,et al.  Finding a Shortest Solution for the N × N Extension of the 15-PUZZLE Is Intractable , 1986, AAAI.

[38]  Rolf Drechsler,et al.  An improved branch and bound algorithm for exact BDD minimization , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[39]  A. Richard Newton,et al.  Logic synthesis for large pass transistor circuits , 1997, ICCAD 1997.

[40]  Judea Pearl,et al.  Studies in Semi-Admissible Heuristics , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  M. Chrzanowska-Jeske,et al.  Mapping of symmetric and partially-symmetric functions to the CA-type FPGAs , 1995, 38th Midwest Symposium on Circuits and Systems. Proceedings.

[42]  Tae Sun Kim,et al.  An Efficient Method for Optimal BDD Ordering Computation , 1993 .

[43]  F. Somenzi,et al.  Using lower bounds during dynamic BDD minimization , 2001 .

[44]  Rolf Drechsler,et al.  Effect of improved lower bounds in dynamic BDD reordering , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[45]  Eric A. Hansen,et al.  Anytime Heuristic Search , 2011, J. Artif. Intell. Res..

[46]  Enrico Macii,et al.  Symbolic algorithms for layout-oriented synthesis of pass transistor logic circuits , 1998, 1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287).

[47]  Richard E. Korf,et al.  Frontier search , 2005, JACM.

[48]  Hermann Kaindl,et al.  Memory-Bounded Bidirectional Search , 1994, AAAI.

[49]  Rolf Drechsler,et al.  Fast exact minimization of BDD's , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[50]  Manuela Veloso,et al.  ASET : a Multi-Agent Planning Language with Nondeterministic Durative Tasks for BDD-Based Fault Tolerant Planning ∗ , 2005 .

[51]  Manuela M. Veloso,et al.  SetA*: an efficient BDD-based heuristic search algorithm , 2002, AAAI/IAAI.

[52]  R. Rudell Dynamic variable ordering for ordered binary decision diagrams , 1993, Proceedings of 1993 International Conference on Computer Aided Design (ICCAD).

[53]  Claude E. Shannon,et al.  A symbolic analysis of relay and switching circuits , 1938, Transactions of the American Institute of Electrical Engineers.

[54]  Luca Benini,et al.  On-the-fly layout generation for PTL macrocells , 2001, Proceedings Design, Automation and Test in Europe. Conference and Exhibition 2001.

[55]  Richard E. Korf,et al.  Divide-and-Conquer Frontier Search Applied to Optimal Sequence Alignment , 2000, AAAI/IAAI.

[56]  Rolf Drechsler,et al.  Combining ordered best-first search with branch and bound for exact BDD minimization , 2005 .

[57]  Eric A. Hansen,et al.  Memory-Bounded A* Graph Search , 2002, FLAIRS.

[58]  Bart Selman,et al.  Unifying SAT-based and Graph-based Planning , 1999, IJCAI.

[59]  Kenneth J. Supowit,et al.  Finding the Optimal Variable Ordering for Binary Decision Diagrams , 1990, IEEE Trans. Computers.

[60]  Giovanni De Micheli,et al.  Technology mapping for electrically programmable gate arrays , 1991, 28th ACM/IEEE Design Automation Conference.

[61]  Sebastian Thrun,et al.  Anytime search in dynamic graphs , 2008, Artif. Intell..

[62]  Piergiorgio Bertoli,et al.  Planning in Nondeterministic Domains under Partial Observability via Symbolic Model Checking , 2001, IJCAI.

[63]  Sebastian Thrun,et al.  ARA*: Anytime A* with Provable Bounds on Sub-Optimality , 2003, NIPS.

[64]  S. Schroedl An Improved Search Algorithm for Optimal Multiple-Sequence Alignment , 2005, J. Artif. Intell. Res..

[65]  Frank Reffel,et al.  OBDDs in Heuristic Search , 1998, KI.

[66]  Rolf Drechsler,et al.  Fast exact minimization of BDDs , 1998, Proceedings 1998 Design and Automation Conference. 35th DAC. (Cat. No.98CH36175).

[67]  Eric A. Hansen,et al.  Sweep A: space-efficient heuristic search in partially ordered graphs , 2003, Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence.

[68]  Ira Pohl,et al.  Heuristic Search Viewed as Path Finding in a Graph , 1970, Artif. Intell..

[69]  Ira Pohl,et al.  The Avoidance of (Relative) Catastrophe, Heuristic Competence, Genuine Dynamic Weighting and Computational Issues in Heuristic Problem Solving , 1973, IJCAI.

[70]  Piergiorgio Bertoli,et al.  Heuristic Search + Symbolic Model Checking = Efficient Conformant Planning , 2001, IJCAI.

[71]  Zhengzhu Feng,et al.  Symbolic Heuristic Search Using Decision Diagrams , 2002, SARA.

[72]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[73]  Eric A. Hansen,et al.  Multiple sequence alignment using anytime A* , 2002, AAAI/IAAI.

[74]  Randal E. Bryant,et al.  Efficient implementation of a BDD package , 1991, DAC '90.

[75]  Detlef Sieling The Nonapproximability of OBDD Minimization , 2002, Inf. Comput..

[76]  Donald B. Johnson,et al.  Efficient Algorithms for Shortest Paths in Sparse Networks , 1977, J. ACM.

[77]  Blai Bonet,et al.  Heuristic Search Planner 2.0 , 2001, AI Mag..

[78]  D. Long,et al.  E cient Implementation of the Plan Graph in STAN , 1999 .

[79]  Blai Bonet,et al.  Planning as heuristic search , 2001, Artif. Intell..

[80]  Richard E. Korf,et al.  Linear-Space Best-First Search , 1993, Artif. Intell..

[81]  Hermann Kaindl,et al.  Bidirectional Heuristic Search Reconsidered , 1997, J. Artif. Intell. Res..

[82]  Hiroshi Sawada,et al.  Minimization of binary decision diagrams based on exchanges of variables , 1991, 1991 IEEE International Conference on Computer-Aided Design Digest of Technical Papers.

[83]  Malgorzata Marek-Sadowska,et al.  Wave steering in YADDs: a novel non-iterative synthesis and layout technique , 1999, DAC '99.

[84]  Sarit Kraus,et al.  KBFS: K-Best-First Search , 2003, Annals of Mathematics and Artificial Intelligence.

[85]  Beate Bollig,et al.  Improving the Variable Ordering of OBDDs Is NP-Complete , 1996, IEEE Trans. Computers.

[86]  Shih-Chieh Chang,et al.  Technology mapping for TLU FPGAs based on decomposition of binary decision diagrams , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[87]  Rolf Drechsler,et al.  A genetic algorithm for variable ordering of obdds , 1996 .

[88]  M. Ciesielski,et al.  BDS: a BDD-based logic optimization system , 2000, Proceedings 37th Design Automation Conference.

[89]  Hermann Kaindl,et al.  Bidirectional Best-First Search with Bounded Error: Summary of Results , 1993, IJCAI.