Biregular graphs with three eigenvalues

We consider nonregular graphs having precisely three distinct eigenvalues. The focus is mainly on the case of graphs having two distinct valencies and our results include constructions of new examples, structure theorems, valency constraints, and a classification of certain special families of such graphs. We also present a new example of a graph with three valencies and three eigenvalues of which there are currently only finitely many known examples.

[1]  W. G. Bridges,et al.  Multiplicative cones — a family of three eigenvalue graphs , 1981 .

[2]  A. Neumaier Strongly regular graphs with smallest eigenvalue —m , 1979 .

[3]  R. C. Bose Symmetric group divisible designs with the dual property , 1977 .

[4]  Edwin R. van Dam The Combinatorics of Dom de Caen , 2005, Des. Codes Cryptogr..

[5]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[6]  Mikhail E. Muzychuk,et al.  On graphs with three eigenvalues , 1998, Discret. Math..

[7]  H. Chuang,et al.  Graphs with three distinct eigenvalues and largest eigenvalue less than 8 , 2009 .

[8]  Edwin R. van Dam,et al.  Graphs with many valencies and few eigenvalues , 2014, 1405.3383.

[9]  W. Haemers Eigenvalue techniques in design and graph theory , 1979 .

[10]  S. S. Shrikhande,et al.  Affine resolvable balanced incomplete block designs: A survey , 1976 .

[11]  Edward Spence,et al.  A Nonregular Analogue of Conference Graphs , 1999, J. Comb. Theory A.

[12]  Peter Rowlinson,et al.  On the Multiplicities of Graph Eigenvalues , 2003 .

[13]  Brendan D. McKay,et al.  Practical graph isomorphism, II , 2013, J. Symb. Comput..

[14]  Robert Kooij,et al.  The Minimal Spectral Radius of Graphs with a Given Diameter , 2006 .

[15]  J. Seidel Strongly regular graphs with (-1, 1, 0) adjacency matrix having eigenvalue 3 , 1968 .

[16]  Changan SOME PROPERTIES OF THE SPECTRUM OF GRAPHS , 1999 .

[17]  Haim Hanani,et al.  On Resolvable Balanced Incomplete Block Designs , 1974, J. Comb. Theory, Ser. A.

[18]  Vladimir D. Tonchev,et al.  Classification of affine resolvable 2-(27, 9, 4) designs , 1996 .

[19]  Willem H. Haemers,et al.  The Search for Pseudo Orthogonal Latin Squares of Order Six , 2000, Des. Codes Cryptogr..

[20]  Edwin R. van Dam,et al.  Nonregular Graphs with Three Eigenvalues , 1998, J. Comb. Theory B.