A Phosphorescent Poly(dendrimer) Containing Iridium(III) Complexes: Synthesis and Light-Emitting Properties

A poly(styrene) with pendant dendronized iridium(III) complexes attached to every repeat unit was prepared in good yields using a free radical polymerization of a “macromonomer”. The dendronized pendant groups were heteroleptic iridium(III) complexes comprised of two 2-phenylpydridyl ligands, to which first generation biphenyl dendrons with 2-ethylhexyloxy surface groups were attached, and a phenyltriazolyl coligand that formed the attachment point to the polymer backbone. Dendronization of the pendant iridium(III) complexes was found to improve thermal stability, solubility, and solution (61%) and solid-state (13%) photoluminescence quantum yields (PLQYs) relative to the nondendronized homopolymer. Viscosity under normal solution processing conditions of 25 mg/mL was found to be 1.23 cSt. Importantly, although the phosphorescent iridium(III) chromophores are held closely along the polymer backbone, they do not significantly reduce the PLQY in solution by intrachain chromophore interactions. Simple bilaye...

[1]  I. Samuel,et al.  The development of poly(dendrimer)s for advanced processing , 2010 .

[2]  In Hwan Jung,et al.  Single Chain White-Light-Emitting Polyfluorene Copolymers Containing Iridium Complex Coordinated on the Main Chain , 2010 .

[3]  Biwu Ma,et al.  Site Isolation in Phosphorescent Bichromophoric Block Copolymers Designed for White Electroluminescence , 2010, Advanced materials.

[4]  Andreas Winter,et al.  Recent Developments in the Application of Phosphorescent Iridium(III) Complex Systems , 2009 .

[5]  In Hwan Jung,et al.  Synthesis and Electroluminescence of New Polyfluorene Copolymers Containing Iridium Complex Coordinated on the Main Chain , 2009 .

[6]  Ruth E. Harding,et al.  High-triplet-energy dendrons: enhancing the luminescence of deep blue phosphorescent iridium(III) complexes. , 2009, Journal of the American Chemical Society.

[7]  I. Samuel,et al.  A study on the preparation and photophysical properties of an iridium(III) complexed homopolymer , 2009 .

[8]  Yun Chi,et al.  En Route to High External Quantum Efficiency (∼12%), Organic True‐Blue‐Light‐Emitting Diodes Employing Novel Design of Iridium (III) Phosphors , 2009 .

[9]  Ruth E. Harding,et al.  The development of phenylethylene dendrons for blue phosphorescent emitters , 2009 .

[10]  Soo Young Park,et al.  Phosphorescent iridium(III) complexes: toward high phosphorescence quantum efficiency through ligand control. , 2009, Dalton transactions.

[11]  P. Meredith,et al.  MACROMOLECULAR ARCHITECTURES: ENHANCING SOLUTION PROCESSABILITY OF IRIDIUM(III) COMPLEXES , 2009 .

[12]  Bernard Kippelen,et al.  Optimization of Orange‐Emitting Electrophosphorescent Copolymers for Organic Light‐Emitting Diodes , 2008 .

[13]  Ruth E. Harding,et al.  Solution‐Processible Phosphorescent Blue Dendrimers Based on Biphenyl‐Dendrons and Fac‐tris(phenyltriazolyl)iridium(III) Cores , 2008 .

[14]  Ruth E. Harding,et al.  Non-radiative decay mechanisms in blue phosphorescent iridium(III)complexes , 2008 .

[15]  Ruth E. Harding,et al.  A rapid route to carbazole containing dendrons and phosphorescent dendrimers , 2008 .

[16]  S. Barlow,et al.  Norbornene-based copolymers with iridium complexes and bis(carbazolyl)fluorene groups in their side-chains and their use in light-emitting diodes , 2007 .

[17]  P. Chou,et al.  Synthesis, structure and electroluminescent properties of cyclometalated iridium complexes possessing sterically hindered ligands. , 2007, Dalton transactions.

[18]  I. Samuel,et al.  The Development of Light‐Emitting Dendrimers for Displays , 2007 .

[19]  Fuyou Li,et al.  Nonconjugated dendritic iridium(III) complexes with tunable pyridine-based ligands: synthesis, photophysical, electrochemical, and electroluminescent properties. , 2007, Inorganic chemistry.

[20]  I. Samuel,et al.  Highly Branched Phosphorescent Dendrimers for Efficient Solution‐Processed Organic Light‐Emitting Diodes , 2007 .

[21]  Shih-Chun Lo,et al.  Development of dendrimers: macromolecules for use in organic light-emitting diodes and solar cells. , 2007, Chemical reviews.

[22]  Qiang Zhao,et al.  π-Conjugated Chelating Polymers with a Charged Iridium Complex in the Backbones: Toward Saturated-Red Phosphorescent Polymer Light-Emitting Diodes , 2007 .

[23]  S. Holdcroft,et al.  Enhancement of Phosphorescence of Ir Complexes Bound to Conjugated Polymers: Increasing the Triplet Level of the Main Chain , 2006 .

[24]  Ruth E. Harding,et al.  Blue Phosphorescence from Iridium(III) Complexes at Room Temperature , 2006 .

[25]  Fuyou Li,et al.  π‐Conjugated Chelating Polymers with Charged Iridium Complexes in the Backbones: Synthesis, Characterization, Energy Transfer, and Electrochemical Properties , 2006 .

[26]  Klaus Meerholz,et al.  Highly Efficient Polymeric Electrophosphorescent Diodes , 2006 .

[27]  E. Namdas,et al.  The synthesis and properties of iridium cored dendrimers with carbazole dendrons , 2006 .

[28]  M. Weck,et al.  Polymer-based tris(2-phenylpyridine)iridium complexes , 2006 .

[29]  Martin Pfeiffer,et al.  Highly efficient top emitting organic light-emitting diodes with organic outcoupling enhancement layers , 2006 .

[30]  Xiabin Jing,et al.  Highly Efficient Green‐Emitting Phosphorescent Iridium Dendrimers Based on Carbazole Dendrons , 2006 .

[31]  Yong Cao,et al.  Electrophosphorescent Chelating Copolymers Based on Linkage Isomers of Naphthylpyridine−Iridium Complexes with Fluorene , 2006 .

[32]  M. Thompson,et al.  Living Radical Polymerization of Bipolar Transport Materials for Highly Efficient Light Emitting Diodes , 2006 .

[33]  Se Hun Kim,et al.  Blue Electrophosphorescence from Iridium Complex Covalently Bonded to the Poly(9-dodecyl-3-vinylcarbazole): Suppressed Phase Segregation and Enhanced Energy Transfer , 2006 .

[34]  Julie J. Brown,et al.  Saturated deep blue organic electrophosphorescence using a fluorine-free emitter , 2005 .

[35]  M. Weck,et al.  Phosphorescent Side-Chain Functionalized Poly(norbornene)s Containing Iridium Complexes , 2005 .

[36]  Yong Cao,et al.  Synthesis of electrophosphorescent polymers based on para-phenylenes with iridium complexes , 2005 .

[37]  Ifor D. W. Samuel,et al.  A Light‐Blue Phosphorescent Dendrimer for Efficient Solution‐Processed Light‐Emitting Diodes , 2005 .

[38]  E. Namdas,et al.  Encapsulated Cores: Host‐Free Organic Light‐Emitting Diodes Based on Solution‐Processible Electrophosphorescent Dendrimers , 2005 .

[39]  U. Schubert,et al.  Greenish‐yellow‐, yellow‐, and orange‐light‐emitting iridium(III) polypyridyl complexes with poly(ε‐caprolactone)–bipyridine macroligands , 2005 .

[40]  S. Tokito,et al.  Organic Light-Emitting Diodes Using Multifunctional Phosphorescent Dendrimers with Iridium-Complex Core and Charge-Transporting Dendrons , 2005 .

[41]  J. Kido,et al.  Synthesis of polymer‐iridium complex and its electroluminescent characteristics , 2005 .

[42]  Yong Cao,et al.  High-Efficiency Electrophosphorescent Fluorene-alt-carbazole Copolymers N-Grafted with Cyclometalated Ir Complexes , 2005 .

[43]  Fumio Sato,et al.  Highly efficient polymer light-emitting devices using ambipolar phosphorescent polymers , 2005 .

[44]  U. Schubert,et al.  Ink‐Jet Printing of Luminescent Ruthenium‐ and Iridium‐Containing Polymers for Applications in Light‐Emitting Devices , 2005 .

[45]  C. Shu,et al.  Iridium(III) complexes with orthometalated quinoxaline ligands: subtle tuning of emission to the saturated red color. , 2005, Inorganic chemistry.

[46]  M. Thompson,et al.  Platinum-functionalized random copolymers for use in solution-processible, efficient, near-white organic light-emitting diodes. , 2004, Journal of the American Chemical Society.

[47]  E. Namdas,et al.  The synthesis and properties of solution processable red-emitting phosphorescent dendrimers , 2004 .

[48]  U. Schubert,et al.  Mixed iridium(III) and ruthenium(II) polypyridyl complexes containing poly(ε‐caprolactone)‐bipyridine macroligands , 2004 .

[49]  Charlotte K. Williams,et al.  Solution-processible conjugated electrophosphorescent polymers. , 2004, Journal of the American Chemical Society.

[50]  S. Tokito,et al.  Improvement of emission efficiency in polymer light-emitting devices based on phosphorescent polymers , 2003 .

[51]  E. Namdas,et al.  Synthesis and properties of highly efficient electroluminescent green phosphorescent iridium cored dendrimers , 2003 .

[52]  M. Thompson,et al.  Simultaneous light emission from a mixture of dendrimer encapsulated chromophores: a model for single-layer multichromophoric organic light-emitting diodes. , 2003, Journal of the American Chemical Society.

[53]  Akira Tsuboyama,et al.  Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode. , 2003, Journal of the American Chemical Society.

[54]  Fumio Sato,et al.  High-efficiency phosphorescent polymer light-emitting devices , 2003 .

[55]  Sergey Lamansky,et al.  Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III) complexes. , 2003, Journal of the American Chemical Society.

[56]  Zhishan Bo,et al.  Dendronized Polymers: Recent Progress in Synthesis , 2003 .

[57]  Yongmin Liang,et al.  High-efficiency red-light emission from polyfluorenes grafted with cyclometalated iridium complexes and charge transport moiety. , 2003, Journal of the American Chemical Society.

[58]  Jang‐Joo Kim,et al.  Polymer electrophosphorescent device: comparison of phosphorescent dye doped and coordinated systems , 2003 .

[59]  Daniel Moses,et al.  Red electrophosphorescence from polymer doped with iridium complex , 2002 .

[60]  M. Thompson,et al.  Cyclometalated Ir complexes in polymer organic light-emitting devices , 2002 .

[61]  Ifor D. W. Samuel,et al.  Green Phosphorescent Dendrimer for Light‐Emitting Diodes , 2002 .

[62]  Ifor D. W. Samuel,et al.  High-efficiency green phosphorescence from spin-coated single-layer dendrimer light-emitting diodes , 2002 .

[63]  S. Forrest,et al.  Nearly 100% internal phosphorescence efficiency in an organic light emitting device , 2001 .

[64]  Stephen R. Forrest,et al.  Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials , 2001 .

[65]  Shizuo Tokito,et al.  Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer , 2001 .

[66]  S. R. Forrest,et al.  High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer , 2000, Nature.

[67]  I. Samuel,et al.  A Facile Iterative Procedure for the Preparation of Dendrimers Containing Luminescent Cores and Stilbene Dendrons , 1999 .

[68]  I. Samuel,et al.  CONJUGATED DENDRIMERS FOR LIGHT-EMITTING DIODES : EFFECT OF GENERATION , 1999 .

[69]  S. Forrest,et al.  Highly efficient phosphorescent emission from organic electroluminescent devices , 1998, Nature.

[70]  Ifor D. W. Samuel,et al.  Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers , 1995 .

[71]  R. Watts,et al.  Synthesis and characterizations of cyclometalated iridium(III) solvento complexes , 1994 .

[72]  G. Gritzner,et al.  Recommendations on reporting electrode potentials in nonaqueous solvents: IUPC commission on electrochemistry , 1984 .

[73]  J. Demas,et al.  Measurement of photoluminescence quantum yields. Review , 1971 .

[74]  B. M. Fabuss,et al.  Viscosity of liquid water from 25 to 150.degree. measurements in pressurized glass capillary viscometer , 1968 .

[75]  J. R. Coe,et al.  Absolute viscosity of water at 20-degrees-C , 1952 .