Geometric travel planning

This paper provides a novel approach for optimal route planning making efficient use of the underlying geometrical structure. It combines classical AI exploration with computational geometry. Given a set of global positioning system (GPS) trajectories, the input is refined by geometric filtering and rounding algorithms. For constructing the graph and the according point localization structure, fast scan-line and divide-and-conquer algorithms are applied. For speeding up the optimal on-line search algorithms, the geometrical structure of the inferred weighted graph is exploited in two ways. The graph is compressed while retaining the original information for unfolding resulting shortest paths. It is then annotated by lower bound refined topographic information; for example by the bounding boxes of all shortest paths that start with a given edge. The on-line planning system GPS-ROUTE implements the above techniques and provides a client-server Web interface to answer series of shortest-path or shortest-time queries.

[1]  Kurt Mehlhorn,et al.  The LEDA Platform of Combinatorial and Geometric Computing , 1997, ICALP.

[2]  Stefan Edelkamp,et al.  Route Planning and Map Inference with Global Positioning Traces , 2003, Computer Science in Perspective.

[3]  Frank Schulz,et al.  Using Multi-Level Graphs for Timetable Information , 2001 .

[4]  Seth Pettie,et al.  Experimental Evaluation of a New Shortest Path Algorithm , 2002, ALENEX.

[5]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter , 1990 .

[6]  Larry S. Davis,et al.  Pattern Databases , 1979, Data Base Design Techniques II.

[7]  Dorothea Wagner,et al.  Geometric Speed-Up Techniques for Finding Shortest Paths in Large Sparse Graphs , 2003, ESA.

[8]  Sridhar Ramaswamy,et al.  Theory and Practice of I/O-Efficient Algorithms for Multidimensional Batched Searching Problems (Extended Abstract) , 1998, SODA.

[9]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[10]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[11]  Leonidas J. Guibas,et al.  Randomized incremental construction of Delaunay and Voronoi diagrams , 1990, Algorithmica.

[12]  Stefan Edelkamp,et al.  Localizing A* , 2000, AAAI/IAAI.

[13]  Mark H. Overmars,et al.  Union-copy structures and dynamic segment trees , 1993, JACM.

[14]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[15]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[16]  Bernard Chazelle Reporting and Counting Segment Intersections , 1986, J. Comput. Syst. Sci..

[17]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[18]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[19]  Karsten Weihe,et al.  Dijkstra's algorithm on-line: an empirical case study from public railroad transport , 2000, JEAL.

[20]  Ivan J. Balaban,et al.  An optimal algorithm for finding segments intersections , 1995, SCG '95.

[21]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[22]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[23]  Mikkel Thorup,et al.  Undirected single-source shortest paths with positive integer weights in linear time , 1999, JACM.