A synthesis of bacterial and archaeal phenotypic trait data

[1]  Patrice Déhais,et al.  The MACADAM database: a MetAboliC pAthways DAtabase for Microbial taxonomic groups for mining potential metabolic capacities of archaeal and bacterial taxonomic groups , 2019, Database J. Biol. Databases Curation.

[2]  Elena Litchman,et al.  Trait-based community assembly and succession of the infant gut microbiome , 2019, Nature Communications.

[3]  I-Min A. Chen,et al.  Genomes OnLine database (GOLD) v.7: updates and new features , 2018, Nucleic Acids Res..

[4]  Minoru Kanehisa,et al.  New approach for understanding genome variations in KEGG , 2018, Nucleic Acids Res..

[5]  Christian Ebeling,et al.  BacDive in 2019: bacterial phenotypic data for High-throughput biodiversity analysis , 2018, Nucleic Acids Res..

[6]  Donovan H. Parks,et al.  AnnoTree: visualization and exploration of a functionally annotated microbial tree of life , 2018, bioRxiv.

[7]  R. P. Ross,et al.  Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp , 2018, Applied and Environmental Microbiology.

[8]  Eoin L. Brodie,et al.  Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change , 2018, The ISME Journal.

[9]  Donovan H. Parks,et al.  A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life , 2018, Nature Biotechnology.

[10]  Burdukiewicz Michał,et al.  PhyMet2: a database and toolkit for phylogenetic and metabolic analyses of methanogens , 2018, Environmental microbiology reports.

[11]  Emily S Bernhardt,et al.  Understanding how microbiomes influence the systems they inhabit , 2018, Nature Microbiology.

[12]  M. Engqvist Correlating enzyme annotations with a large set of microbial growth temperatures reveals metabolic adaptations to growth at diverse temperatures , 2018, BMC Microbiology.

[13]  N. Segata,et al.  The Microbe Directory: An annotated, searchable inventory of microbes’ characteristics , 2018, Gates open research.

[14]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[15]  N. Fierer Embracing the unknown: disentangling the complexities of the soil microbiome , 2017, Nature Reviews Microbiology.

[16]  N. Fierer,et al.  Hiding in Plain Sight: Mining Bacterial Species Records for Phenotypic Trait Information , 2017, mSphere.

[17]  Mridul K. Thomas,et al.  Temperature‐ and size‐scaling of phytoplankton population growth rates: Reconciling the Eppley curve and the metabolic theory of ecology , 2017 .

[18]  Rida Assaf,et al.  Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center , 2016, Nucleic Acids Res..

[19]  Tomislav Šmuc,et al.  The landscape of microbial phenotypic traits and associated genes , 2016, Nucleic acids research.

[20]  M. Doebeli,et al.  Decoupling function and taxonomy in the global ocean microbiome , 2016, Science.

[21]  John P. Bowman,et al.  The Biokinetic Spectrum for Temperature , 2016, PloS one.

[22]  Brian C. Thomas,et al.  A new view of the tree of life , 2016, Nature Microbiology.

[23]  S. Wright,et al.  The global spectrum of plant form and function , 2015, Nature.

[24]  Francis K. C. Hui,et al.  Plant functional traits have globally consistent effects on competition , 2015, Nature.

[25]  W. Whitman Bergey's Manual of Systematics of Archaea and Bacteria , 2016 .

[26]  Jay T. Lennon,et al.  Microbiomes in light of traits: A phylogenetic perspective , 2015, Science.

[27]  Mridul K. Thomas,et al.  Global biogeochemical impacts of phytoplankton: a trait‐based perspective , 2015 .

[28]  C. Klausmeier,et al.  Nutrient utilization traits of phytoplankton , 2015 .

[29]  Sławomir Jabłoński,et al.  Methanogenic archaea database containing physiological and biochemical characteristics. , 2015, International journal of systematic and evolutionary microbiology.

[30]  Robert Hein,et al.  rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development , 2014, Nucleic Acids Res..

[31]  Noah Fierer,et al.  Seeing the forest for the genes: using metagenomics to infer the aggregated traits of microbial communities , 2014, Front. Microbiol..

[32]  Benjamin D. Heavner,et al.  MediaDB: A Database of Microbial Growth Conditions in Defined Media , 2014, PloS one.

[33]  X. Le Roux,et al.  Trait-based approaches for understanding microbial biodiversity and ecosystem functioning , 2014, Front. Microbiol..

[34]  Dennis A. Benson,et al.  GenBank , 2012, Nucleic acids research.

[35]  E. Roden,et al.  Thermodynamics of Microbial Growth Coupled to Metabolism of Glucose, Ethanol, Short-Chain Organic Acids, and Hydrogen , 2011, Applied and Environmental Microbiology.

[36]  Eduardo P. C. Rocha,et al.  The Systemic Imprint of Growth and Its Uses in Ecological (Meta)Genomics , 2010, PLoS genetics.

[37]  Igor B. Zhulin,et al.  The MiST2 database: a comprehensive genomics resource on microbial signal transduction , 2009, Nucleic Acids Res..

[38]  S. Bryant,et al.  Database resources of the National Center for Biotechnology Information , 2008, Nucleic acids research.

[39]  Elena Litchman,et al.  Trait-Based Community Ecology of Phytoplankton , 2008 .

[40]  S. L. Nielsen Size-dependent growth rates in eukaryotic and prokaryotic algae exemplified by green algae and cyanobacteria: comparisons between unicells and colonial growth forms , 2006 .

[41]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[42]  J. Amend,et al.  Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. , 2001, FEMS microbiology reviews.

[43]  M. M. Mason,et al.  A Comparison of the Maximal Growth Rates of Various Bacteria under Optimal Conditions , 1935, Journal of bacteriology.