Parallel electric resistivity in the TFTR tokamak

The average parallel resistivity and the location of the q=1 surface are found to be consistent with the predictions of neoclassical transport theory and inconsistent with classical resistivity (uncorrected for toroidal effects) for Ohmic plasmas in the TFTR tokamak [Plasma Physics and Controlled Nuclear Fusion Research 1986 (IAEA, Vienna, 1987), Vol. I, p. 51], both in near‐equilibrium and during ramping of the plasma current. These observations are incompatible with theories predicting anomalous parallel resistivity in concert with anomalous perpendicular transport.

[1]  R. J. Hawryluk,et al.  Neoclassical conductivity of a tokamak plasma , 1977 .

[2]  K. Steuer,et al.  Measurement of Z_sub.eff Profiles from Bremsstrahlung Emission in the Near Infrared , 1988 .

[3]  David W. Swain,et al.  An efficient technique for magnetic analysis of non-circular, high-beta tokamak equilibria , 1982 .

[4]  M. Zarnstorff,et al.  Experimental results from detached plasmas in TFTR , 1987 .

[5]  S. Wolfe,et al.  Marfe: an edge plasma phenomenon , 1984 .

[6]  A. Ramsey,et al.  HAIFA: A modular, fiber‐optic coupled, spectroscopic diagnostic for plasmas , 1987 .

[7]  V. Paré,et al.  Diagnostic applications of the TFTR XIS system , 1986 .

[8]  Bastiaan J. Braams,et al.  Conductivity of a relativistic plasma , 1989 .

[9]  P. Phillips,et al.  Current diffusion in TEXT , 1987 .

[10]  F. C. Schüller,et al.  Energy confinement in JET ohmically heated plasmas , 1988 .

[11]  M. Bell,et al.  Magnetic diagnostics and feedback control on TFTR (invited) , 1985 .

[12]  Bell,et al.  Bootstrap current in TFTR. , 1988, Physical review letters.

[13]  H. Park,et al.  Multichannel far-infrared laser interferometer for electron density measurements on the tokamak fusion test reactor. , 1987, Applied optics.

[14]  D. Brouchous,et al.  Observations of neoclassical and anomalous resistivity in toroidal discharges , 1980 .

[15]  H. Soltwisch Measurement of current-density changes during sawtooth activity in a tokamak by far-infrared polarimetry (invited) , 1988 .

[16]  R. J. Hawryluk,et al.  TFTR Plasma Feedback Systems , 1985 .

[17]  L. Spitzer,et al.  TRANSPORT PHENOMENA IN A COMPLETELY IONIZED GAS , 1953 .

[18]  R. Wieland,et al.  A pressure profile analysis of high-beta ISX-B tokamak plasmas using MHD equilibrium geometry , 1983 .

[19]  K. Shaing Neoclassical quasilinear transport theory of fluctuations in toroidal plasmas , 1988 .

[20]  Mitsuru Kikuchi,et al.  Bootstrap current during perpendicular neutral injection in JT-60 , 1990 .

[21]  F. Hinton,et al.  Theory of plasma transport in toroidal confinement systems , 1976 .

[22]  C. D. Challis,et al.  Non-inductively driven currents in JET , 1989 .

[23]  S. Suckewer,et al.  Conductivity and transport in neon deuterium discharges in the PLT tokamak , 1984 .

[24]  B. Grek,et al.  Multichannel Thomson scattering systems with high spatial resolution (invited) , 1986 .

[25]  H. K. Park,et al.  A new asymmetric Abel-inversion method for plasma interferometry in tokamaks , 1989 .

[26]  S. Hirshman,et al.  Neoclassical transport of impurities in tokamak plasmas , 1981 .

[27]  Tadashi Sekiguchi,et al.  Plasma Physics and Controlled Nuclear Fusion Research , 1987 .

[28]  F. C. Schüller,et al.  Plasma resistivity and field penetration in JET , 1988 .

[29]  S. Hirshman Neoclassical current in a toroidally‐confined multispecies plasma , 1977 .

[30]  P. Efthimion,et al.  Fast scanning heterodyne receiver for the measurement of the time evolution of the electron temperature profile on the Tokamak Fusion Test Reactor , 1984 .