Dimensional dual hyperovals and APN functions with translation groups

In this paper we develop a theory of translation groups for dimensional dual hyperovals and APN functions. It will be seen that both theories can be treated, to a large degree, simultaneously. For small ambient spaces it will be shown that the translation groups are normal in the automorphism group of the respective geometric object. For large ambient spaces there may be more than one translation group. We will determine the structure of the normal closure of the translation groups in the automorphism group and we will exhibit examples which in fact do admit more than one translation group.

[1]  Alexander Pott,et al.  A new almost perfect nonlinear function which is not quadratic , 2008, Adv. Math. Commun..

[2]  Satoshi Yoshiara Equivalences of quadratic APN functions , 2012 .

[3]  Erwin Schrödinger International,et al.  Supported by the Austrian Federal Ministry of Education, Science and Culture , 1689 .

[4]  Yves Edel On quadratic APN functions and dimensional dual hyperovals , 2010, Des. Codes Cryptogr..

[5]  Satoshi Yoshiara,et al.  Ambient Spaces of Dimensional Dual Arcs , 2004 .

[6]  Alberto Del Fra On d-Dimensional Dual Hyperovals , 2000 .

[7]  Hiroaki Taniguchi On the duals of certain d-dimensional dual hyperovals in PG(2d+1, 2) , 2009, Finite Fields Their Appl..

[8]  Hiroaki Taniguchi On the dual of the dual hyperoval from APN function f(x)=x3+Tr(x9) , 2012, Finite Fields Their Appl..

[9]  William M. Kantor Permutation Representations of the Finite Classical Groups of Small Degree or Rank , 1979 .

[10]  Hendrik Van Maldeghem,et al.  Characterizations of the finite quadric Veroneseans V-n(2n) , 2004 .

[11]  Satoshi Yoshiara Dimensional dual hyperovals associated with quadratic APN functions , 2008 .

[12]  Tim Penttila,et al.  Dimensional dual arcs – a survey , 2006 .

[13]  F. Timmesfeld Groups with weakly closedTI-subgroups , 1975 .

[14]  Hiroaki Taniguchi On some d-dimensional dual hyperovals in PG(2d, 2) , 2008, Finite Fields Their Appl..

[15]  Eimear Byrne,et al.  On the equivalence of quadratic APN functions , 2011, Des. Codes Cryptogr..

[16]  Michio Suzuki,et al.  ON A CLASS OF DOUBLY TRANSITIVE GROUPS , 1962 .

[17]  Alexander Hulpke Finite geometries, groups, and computation : proceedings of the conference "Finite geometries, groups, and computation," Pingree Park, Colorado, USA, September 4-9, 2004, , 2006 .

[18]  John F. Dillon On the dimension of an APN code , 2011, Cryptography and Communications.

[19]  H. Kurzweil,et al.  Theorie der endlichen Gruppen , 1998 .

[20]  Norman L. Johnson,et al.  Handbook of Finite Translation Planes , 2007 .

[21]  Claude Carlet,et al.  Codes, Bent Functions and Permutations Suitable For DES-like Cryptosystems , 1998, Des. Codes Cryptogr..

[22]  William M. Kantor,et al.  Commutative semifields and symplectic spreads , 2003 .

[23]  R. W. Hartley,et al.  Determination of the Ternary Collineation Groups Whose Coefficients Lie in the GF(2 n ) , 1925 .

[24]  Characterizations of quadric and Hermitian Veroneseans over finite fields , 2003 .

[25]  Satoshi Yoshiara A Family of d -dimensional Dual Hyperovals in PG(2d+1, 2) , 1999, Eur. J. Comb..

[26]  B. Huppert Endliche Gruppen I , 1967 .

[27]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[28]  Ernest E. Shult,et al.  On a class of doubly transitive groups , 1972 .