Compression-based Modelling of Musical Similarity Perception

Abstract Similarity is an important concept in music cognition research since the similarity between (parts of) musical pieces determines perception of stylistic categories and structural relationships between parts of musical works. The purpose of the present research is to develop and test models of musical similarity perception inspired by a transformational approach which conceives of similarity between two perceptual objects in terms of the complexity of the cognitive operations required to transform the representation of the first object into that of the second, a process which has been formulated in information-theoretic terms. Specifically, computational simulations are developed based on compression distance in which a probabilistic model is trained on one piece of music and then used to predict, or compress, the notes in a second piece. The more predictable the second piece according to the model, the more efficiently it can be encoded and the greater the similarity between the two pieces. The present research extends an existing information-theoretic model of auditory expectation (IDyOM) to compute compression distances varying in symmetry and normalisation using high-level symbolic features representing aspects of pitch and rhythmic structure. Comparing these compression distances with listeners’ similarity ratings between pairs of melodies collected in three experiments demonstrates that the compression-based model provides a good fit to the data and allows the identification of representations, model parameters and compression-based metrics that best account for musical similarity perception. The compression-based model also shows comparable performance to the best-performing algorithms on the MIREX 2005 melodic similarity task.

[1]  Ian H. Witten,et al.  Towards the digital music library: tune retrieval from acoustic input , 1996, DL '96.

[2]  N. Chater,et al.  Similarity as transformation , 2003, Cognition.

[3]  Geraint A. Wiggins,et al.  Probabilistic models of expectation violation predict psychophysiological emotional responses to live concert music , 2013, Cognitive, Affective, & Behavioral Neuroscience.

[4]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[5]  Ian H. Witten,et al.  Multiple viewpoint systems for music prediction , 1995 .

[6]  O. Gotoh An improved algorithm for matching biological sequences. , 1982, Journal of molecular biology.

[7]  Mert Bay,et al.  The Music Information Retrieval Evaluation eXchange: Some Observations and Insights , 2010, Advances in Music Information Retrieval.

[8]  D. Gentner,et al.  Structural Alignment during Similarity Comparisons , 1993, Cognitive Psychology.

[9]  Steffen Pauws,et al.  CubyHum: a fully operational "query by humming" system , 2002, ISMIR.

[10]  Samuel Messick,et al.  STANDARDS OF VALIDITY AND THE VALIDITY OF STANDARDS IN PERFORMANCE ASSESSMENT , 2005 .

[11]  A. Tversky Features of Similarity , 1977 .

[12]  Suzanne Bunton,et al.  Semantically Motivated Improvements for PPM Variants , 1997, Comput. J..

[13]  Teppo E. Ahonen Compressing lists for audio classification , 2010, MML '10.

[14]  R. Nigel Horspool,et al.  Data Compression Using Dynamic Markov Modelling , 1987, Comput. J..

[15]  Schellenberg Eg Expectancy in melody: tests of the implication-realization model , 1996 .

[16]  Ian H. Witten,et al.  The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression , 1991, IEEE Trans. Inf. Theory.

[17]  Nick Chater,et al.  Reconciling simplicity and likelihood principles in perceptual organization. , 1996, Psychological review.

[18]  Ran El-Yaniv,et al.  On Prediction Using Variable Order Markov Models , 2004, J. Artif. Intell. Res..

[19]  Geraint A. Wiggins,et al.  EXPECTATION IN MELODY: THE INFLUENCE OF CONTEXT AND LEARNING , 2006 .

[20]  Tuomas Eerola,et al.  Melodic and contextual similarity of folk song phrases , 2007 .

[21]  Paolo Ferragina,et al.  Text Compression , 2009, Encyclopedia of Database Systems.

[22]  Veli Mäkinen,et al.  String Matching and Geometric Algorithm for Melodic Similarity , 2005 .

[23]  Remco C. Veltkamp,et al.  A Ground Truth For Half A Million Musical Incipits , 2005, J. Digit. Inf. Manag..

[24]  Daniel Müllensiefen,et al.  Cognitive Adequacy in the Measurement of Melodic Similarity: Algorithmic vs. Human Judgments , 2004 .

[25]  María Herrojo Ruiz,et al.  Unsupervised statistical learning underpins computational, behavioural, and neural manifestations of musical expectation , 2010, NeuroImage.

[26]  Daniel Müllensiefen,et al.  THE SIMILE ALGORITHM FOR MELODIC SIMILARITY , 2005 .

[27]  Geraint A. Wiggins,et al.  Algorithms for discovering repeated patterns in multidimensional representations of polyphonic music , 2002 .

[28]  H. Kaiser An index of factorial simplicity , 1974 .

[29]  Simon Dixon,et al.  Sequential Complexity as a Descriptor for Musical Similarity , 2014, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[30]  Ian H. Witten,et al.  PREDICTION AND ENTROPY OF MUSIC , 1990 .

[31]  Eugene Narmour,et al.  The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model , 1990 .

[32]  G. Blelloch Introduction to Data Compression * , 2022 .

[33]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[34]  N. Chater,et al.  Simplicity: a unifying principle in cognitive science? , 2003, Trends in Cognitive Sciences.

[35]  Ian H. Witten,et al.  Data Compression Using Adaptive Coding and Partial String Matching , 1984, IEEE Trans. Commun..

[36]  Marcus T. Pearce,et al.  The construction and evaluation of statistical models of melodic structure in music perception and composition , 2005 .

[37]  Khalid Sayood,et al.  Introduction to data compression (2nd ed.) , 2000 .

[38]  William P. Birmingham,et al.  Johnny Can't Sing: A Comprehensive Error Model for Sung Music Queries , 2002, ISMIR.

[39]  Bin Ma,et al.  The similarity metric , 2001, IEEE Transactions on Information Theory.

[40]  Nick Chater,et al.  The Generalized Universal Law of Generalization , 2001, ArXiv.

[41]  Edna Ruckhaus,et al.  An Analysis of the Mongeau-Sankoff Algorithm for Music Information Retrieval , 2007, ISMIR.

[42]  Rainer Typke,et al.  Music Retrieval based on Melodic Similarity , 2007 .

[43]  Geraint A. Wiggins,et al.  The Role of Expectation and Probabilistic Learning in Auditory Boundary Perception: A Model Comparison , 2010, Perception.

[44]  X. R. L N K C Z V E A Y H G U T X R L N K C Z V E A Y H [General method]. , 2000, Diabetes & metabolism.

[45]  Ming Li,et al.  Genre Classification via an LZ78-Based String Kernel , 2005, ISMIR.

[46]  Richard E. Ladner,et al.  On-line stochastic processes in data compression , 1996 .

[47]  J. Rust,et al.  Modern Psychometrics: The Science of Psychological Assessment , 1989 .

[48]  Ian H. Witten,et al.  Modeling for text compression , 1989, CSUR.

[49]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[50]  Carol L. Krumhansl,et al.  Perceptual Structures for Tonal Music , 1983 .

[51]  John G. Cleary,et al.  Unbounded length contexts for PPM , 1995, Proceedings DCC '95 Data Compression Conference.

[52]  Yoko Oura,et al.  Memory for Melodies among Subjects Differing in Age and Experience in Music , 1988 .

[53]  Christus,et al.  A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins , 2022 .

[54]  John A. Sloboda,et al.  Immediate Recall of Melodies , 2004 .

[55]  Alistair Moffat,et al.  Implementing the PPM data compression scheme , 1990, IEEE Trans. Commun..

[56]  Ronald de Wolf,et al.  Algorithmic Clustering of Music Based on String Compression , 2004, Computer Music Journal.

[57]  I. Peretz,et al.  Differentiation of classical music requires little learning but rhythm , 2005, Cognition.

[58]  A. Tversky,et al.  Similarity, Separability, and the Triangle Inequality , 1982 .

[59]  M. Pearce,et al.  Electrophysiological correlates of melodic processing in congenital amusia , 2013, Neuropsychologia.

[60]  Barbara Jesser Interaktive Melodieanalyse: Methodik und Anwendung computergestützter Analyseverfahren in Musikethnologie und Volksliedforschung: typologiche Untersuchung der Balladenforschung des DVA , 1991 .

[61]  N. Chater The Search for Simplicity: A Fundamental Cognitive Principle? , 1999 .

[62]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[63]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[64]  Alan Marsden Interrogating Melodic Similarity: A Definitive Phenomenon or the Product of Interpretation? , 2012 .

[65]  Costas S. Iliopoulos,et al.  Pattern Processing in Melodic Sequences: Challenges, Caveats and Prospects , 2001, Comput. Humanit..

[66]  C. Krumhansl,et al.  The representation of harmonic structure in music: Hierarchies of stability as a function of context , 1983, Cognition.

[67]  Ramon López de Mántaras,et al.  Melody retrieval using the Implication/Realization Model , 2005 .

[68]  Darrell Conklin,et al.  Fusion functions for multiple viewpoints , 2013 .

[69]  Fraunhofer IDMT Langewiesener Two Note Based Approaches to Query by Singing / Humming Christian Sailer , 2006 .

[70]  Remco C. Veltkamp,et al.  Evaluating the Earth Mover's Distance for measuring symbolic melodic similarity , 2005 .

[71]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[72]  Nicola Dibben,et al.  Motivic Structure and the Perception of Similarity , 2001 .

[73]  Halina Zielinska,et al.  Memorising Two Melodies of Different Style , 1992 .

[74]  M. Li,et al.  Melody Classification using a Similarity Metric based on Kolmogorov Complexity , 2004 .

[75]  Béla Bartók,et al.  Serbo-Croatian Folk Songs; Texts and Transcriptions of Seventy-Five Folk Songs from the Milman Parry Collection and a Morphology of Serbo-Croatian Melodies , 1952 .

[76]  Robert L. Goldstone,et al.  Alignment-based nonmonotonicities in similarity. , 1996, Journal of experimental psychology. Learning, memory, and cognition.

[77]  E. Schellenberg,et al.  Simplifying the Implication-Realization Model of Melodic Expectancy , 1997 .

[78]  D. J. Wheeler,et al.  A Block-sorting Lossless Data Compression Algorithm , 1994 .

[79]  D. Conklin Multiple Viewpoint Systems for Music Classification , 2013 .

[80]  N. Chater,et al.  Transformation and alignment in similarity , 2009, Cognition.

[81]  J J Bharucha,et al.  Disrupting the isochrony underlying rhythm: An asymmetry in discrimination , 1986, Perception & psychophysics.

[82]  David Meredith,et al.  Using general-purpose compression algorithms for music analysis , 2016 .

[83]  Geraint A. Wiggins,et al.  Methods for Combining Statistical Models of Music , 2004, CMMR.

[84]  M. Pearce,et al.  Tracking of pitch probabilities in congenital amusia , 2012, Neuropsychologia.

[85]  A. Tversky,et al.  Similarity, separability, and the triangle inequality. , 1982, Psychological review.

[86]  Remco C. Veltkamp,et al.  MUSICAL MODELS FOR FOLK-SONG MELODY ALIGNMENT , 2009 .

[87]  M. Pearce,et al.  Predictive uncertainty in auditory sequence processing , 2014, Front. Psychol..

[88]  Remco C. Veltkamp,et al.  A Measure for Evaluating Retrieval Techniques based on Partially Ordered Ground Truth Lists , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[89]  Alberto Maria Segre,et al.  The Use of Twitter to Track Levels of Disease Activity and Public Concern in the U.S. during the Influenza A H1N1 Pandemic , 2011, PloS one.

[90]  Lola L. Cuddy,et al.  Musical pattern recognition: A comparison of listening to and studying tonal structures and tonal ambiguities. , 1981 .

[91]  David Meredith Using point-set compression to classify folk songs , 2014 .

[92]  D. Mewhort,et al.  Recognition memory for single tones with and without context. , 1977, Journal of experimental psychology. Human learning and memory.

[93]  Ichiro Fujinaga,et al.  Automatic Genre Classification Using Large High-Level Musical Feature Sets , 2004, ISMIR.

[94]  Nicola Orio COMBINING MULTILEVEL AND MULTIFEATURE REPRESENTATION TO COMPUTE MELODIC SIMILARITY , 2005 .

[95]  Nick Chater,et al.  Understanding Similarity: A Joint Project for Psychology, Case-Based Reasoning, and Law , 1998, Artificial Intelligence Review.

[96]  Béla Bartók,et al.  Serbo-Croatian Folk Songs: Texts and Transcriptions of Seventy-Five Folk Songs From the Milman Parry Collection, and a Morphology of Serbo-Croatian Folk Melodies , 2017 .

[97]  Daniel Müllensiefen,et al.  Court decisions on music plagiarism and the predictive value of similarity algorithms , 2009 .

[98]  E. Schellenberg,et al.  Expectancy in melody: tests of the implication-realization model , 1996, Cognition.

[99]  Terry A. Welch,et al.  A Technique for High-Performance Data Compression , 1984, Computer.

[100]  Marc Leman,et al.  Content-Based Music Information Retrieval: Current Directions and Future Challenges , 2008, Proceedings of the IEEE.

[101]  Bernard Manderick,et al.  String Methods for Folk Tune Genre Classification , 2012, ISMIR.

[102]  David Sankoff,et al.  Comparison of musical sequences , 1990, Comput. Humanit..

[103]  Glen G. Langdon,et al.  Universal modeling and coding , 1981, IEEE Trans. Inf. Theory.

[104]  Zehra Cataltepe,et al.  Music Genre Classification Using MIDI and Audio Features , 2007, EURASIP J. Adv. Signal Process..