Estimating Generalized Synchronization in Brain Electrical Activity from Epilepsy Patients with Cellular Nonlinear Networks

We present a method for estimating the degree of generalized synchronization between long-lasting multichannel recordings of brain electrical activity from epilepsy patients. Using the nonlinear interdependency measure N as an estimator for generalized synchronization and the parallel computing power of a cellular nonlinear network (CNN) with polynomial-type template functions we show that an accurate approximation of N, detecting changes over several days, is possible

[1]  Andreas Schulze-Bonhage,et al.  Testing statistical significance of multivariate time series analysis techniques for epileptic seizure prediction. , 2006, Chaos.

[2]  F. Mormann,et al.  Seizure anticipation: from algorithms to clinical practice , 2006, Current opinion in neurology.

[3]  Klaus Lehnertz,et al.  Characterizing the spatio-temporal dynamics of the epileptogenic process with nonlinear EEG analyses , 2002, Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications.

[4]  Klaus Lehnertz,et al.  EEG Analysis With Nonlinear Excitable Media , 2005, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[5]  S. Espejo,et al.  A CNN universal chip in CMOS technology , 1994, Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94).

[6]  Matthäus Staniek,et al.  Measuring Synchronization in the Epileptic Brain: a Comparison of Different Approaches , 2007, Int. J. Bifurc. Chaos.

[7]  R. KUNZ,et al.  Spatio-Temporal Dynamics Of Brain Electrical Activity In Epilepsy: Analysis With Cellular Neural Networks (CNNs) , 2003, J. Circuits Syst. Comput..

[8]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[9]  R Quian Quiroga,et al.  Performance of different synchronization measures in real data: a case study on electroencephalographic signals. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  C. Stam,et al.  Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets , 2002 .

[11]  J. Kurths,et al.  From Phase to Lag Synchronization in Coupled Chaotic Oscillators , 1997 .

[12]  K. Lehnertz,et al.  The First International Collaborative Workshop on Seizure Prediction: summary and data description , 2005, Clinical Neurophysiology.

[13]  L. Tsimring,et al.  Generalized synchronization of chaos in directionally coupled chaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  F. Takens Detecting strange attractors in turbulence , 1981 .

[15]  M. Rabinovich,et al.  Stochastic synchronization of oscillation in dissipative systems , 1986 .

[16]  R. Vidal Applied simulated annealing , 1993 .

[17]  Ronald Tetzlaff,et al.  Iterative annealing: a new efficient optimization method for cellular neural networks , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[18]  Klaus Lehnertz,et al.  A distributed computing system for multivariate time series analyses of multichannel neurophysiological data , 2006, Journal of Neuroscience Methods.

[19]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[20]  H. Abarbanel,et al.  Generalized synchronization of chaos: The auxiliary system approach. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Klaus Lehnertz,et al.  Estimating phase synchronization in dynamical systems using cellular nonlinear networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Ricardo Carmona-Galán,et al.  A CNN Universal Chip in CMOS Technology , 1996, Int. J. Circuit Theory Appl..

[23]  Ronald Tetzlaff,et al.  Analysis of Brain Electrical Activity in Epilepsy with Cellular Neural Networks (CNN) , 1999 .

[24]  R. Burke,et al.  Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  A. Kraskov,et al.  On the predictability of epileptic seizures , 2005, Clinical Neurophysiology.

[26]  P. Grassberger,et al.  A robust method for detecting interdependences: application to intracranially recorded EEG , 1999, chao-dyn/9907013.

[27]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.