The tight asymptotic approximation ratio of First Fit for bin packing with cardinality constraints

Abstract In bin packing with cardinality constraints (BPCC), there is an upper bound k ≥ 2 on the number of items that can be packed into each bin, additionally to the standard constraint on the total size of items. We study the algorithm First Fit (FF), acting on a list of items, packing each item into the minimum indexed bin that contains at most k − 1 items and has sufficient space for the item. We present a complete analysis of its asymptotic approximation ratio for all values of k . Many years after FF for BPCC was introduced, its tight asymptotic approximation ratio is finally found.

[1]  Jeffrey D. Ullman,et al.  The performance of a memory allocation algorithm , 1971 .

[2]  Andrew Chi-Chih Yao,et al.  New Algorithms for Bin Packing , 1978, JACM.

[3]  Jirí Sgall,et al.  First Fit bin packing: A tight analysis , 2013, STACS.

[4]  H. Kellerer,et al.  Approximation schemes for ordered vector packing problems , 2003 .

[5]  József Békési,et al.  New lower bounds for certain classes of bin packing algorithms , 2012, Theor. Comput. Sci..

[6]  Steven S. Seiden,et al.  On the online bin packing problem , 2001, JACM.

[7]  Leah Epstein,et al.  AFPTAS Results for Common Variants of Bin Packing: A New Method for Handling the Small Items , 2009, SIAM J. Optim..

[8]  Hadas Shachnai,et al.  Tight bounds for online class-constrained packing , 2002, Theor. Comput. Sci..

[9]  David S. Johnson,et al.  Near-optimal bin packing algorithms , 1973 .

[10]  Frank M. Liang A Lower Bound for On-Line Bin Packing , 1980, Inf. Process. Lett..

[11]  Hans Kellerer,et al.  Algorithms for on-line bin-packing problems with cardinality constraints , 2004, Discret. Appl. Math..

[12]  Hiroshi Fujiwara,et al.  Improved lower bounds for the online bin packing problem with cardinality constraints , 2015, J. Comb. Optim..

[13]  Tami Tamir,et al.  Polynominal time approximation schemes for class-constrained packing problem , 2000, APPROX.

[14]  André van Vliet,et al.  An Improved Lower Bound for On-Line Bin Packing Algorithms , 1992, Inf. Process. Lett..

[15]  Leah Epstein Online Bin Packing with Cardinality Constraints , 2006, SIAM J. Discret. Math..

[16]  Hans Kellerer,et al.  Cardinality constrained bin‐packing problems , 1999, Ann. Oper. Res..

[17]  Leah Epstein,et al.  Class constrained bin packing revisited , 2010, Theor. Comput. Sci..

[18]  Andrew Chi-Chih Yao,et al.  Resource Constrained Scheduling as Generalized Bin Packing , 1976, J. Comb. Theory A.

[19]  David S. Johnson,et al.  Fast Algorithms for Bin Packing , 1974, J. Comput. Syst. Sci..

[20]  Leah Epstein,et al.  A new and improved algorithm for online bin packing , 2017, ESA.

[21]  Herb Schwetman,et al.  Analysis of Several Task-Scheduling Algorithms for a Model of Multiprogramming Computer Systems , 1975, JACM.

[22]  Leah Epstein,et al.  Bounds for online bin packing with cardinality constraints , 2016, Inf. Comput..

[23]  D. T. Lee,et al.  A simple on-line bin-packing algorithm , 1985, JACM.

[24]  D. T. Lee,et al.  On-Line Bin Packing in Linear Time , 1989, J. Algorithms.

[25]  Eduardo C. Xavier,et al.  The class constrained bin packing problem with applications to video-on-demand , 2008, Theor. Comput. Sci..

[26]  Jeffrey D. Ullman,et al.  Worst-Case Performance Bounds for Simple One-Dimensional Packing Algorithms , 1974, SIAM J. Comput..