In situ liquid cell electron microscopy of the solution growth of Au-Pd core-shell nanostructures.

Using in situ liquid cell electron microscopy we investigate Pd growth in dilute aqueous Pd salt solutions containing Au nanoparticle seeds. Au-Pd core-shell nanostructures are formed via deposition of Pd(0), generated by the reduction of chloropalladate complexes by radicals, such as hydrated electrons (eaq(-)) induced by the electron beam in the solution. The size and shape of the Au seeds determine the morphology of the Pd shells, via preferential Pd incorporation in low-coordination sites and avoidance of extended facets. Analysis of the Pd incorporation on Au particles at different distances from a focused electron beam provides a quantitative picture of the growth process and shows that the growth is limited by the diffusion of eaq(-) in the solution.

[1]  D. Kolb,et al.  Initial stages of palladium deposition on Au( h k l ) , 2002 .

[2]  James E. Evans,et al.  Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. , 2012, ACS nano.

[3]  P. Alvarez,et al.  Structural analysis of palladium-decorated gold nanoparticles as colloidal bimetallic catalysts , 2011 .

[4]  R. M. Lambert,et al.  Structural and catalytic properties of novel Au/Pd bimetallic colloid particles. EXAFS, XRD, and acetylene coupling , 1995 .

[5]  G. Hutchings,et al.  Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. , 2002, Chemical communications.

[6]  M. Sastry,et al.  Keggin ion-mediated synthesis of aqueous phase-pure Au@Pd and Au@Pt core–shell nanoparticles , 2004 .

[7]  X. Chen,et al.  In situ electrochemical wet cell transmission electron microscopy characterization of solid–liquid interactions between Ni and aqueous NiCl2 , 2012 .

[8]  J. Hughes,et al.  Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. , 2005, Environmental science & technology.

[9]  E. Sutter,et al.  Assembly and interaction of Au/C core-shell nanostructures: in situ observation in the transmission electron microscope. , 2005, Nano letters.

[10]  J. Boag,et al.  Absorption Spectra in Irradiated Water and Some Solutions: Absorption Spectra of ‘Hydrated’ Electron , 1963, Nature.

[11]  Michael H. Huang,et al.  Au nanocube-directed fabrication of Au-Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity. , 2010, Journal of the American Chemical Society.

[12]  James E. Evans,et al.  Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template. , 2012, ACS nano.

[13]  J. Malm,et al.  Ligand‐Stabilized Bimetallic Colloids Identified by HRTEM and EDX , 1991 .

[14]  James E. Evans,et al.  Atomic-Scale Imaging and Spectroscopy for In Situ Liquid Scanning Transmission Electron Microscopy , 2012, Microscopy and Microanalysis.

[15]  Yang Ren,et al.  Structure of gold nanoparticles suspended in water studied by x-ray diffraction and computer simulations , 2005 .

[16]  G. Buxton,et al.  The radiation chemistry of metal ions in aqueous solution , 1977 .

[17]  David J. Smith,et al.  High resolution studies of small particles of gold and silver: II. Single crystals, lamellar twins and polyparticles , 1981 .

[18]  F. Kopinke,et al.  Highly active Pd-on-magnetite nanocatalysts for aqueous phase hydrodechlorination reactions. , 2009, Environmental science & technology.

[19]  A. Alivisatos,et al.  Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories , 2009, Science.

[20]  Won Chul Lee,et al.  Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy. , 2012, ACS nano.

[21]  E. Sutter,et al.  Formation and stabilization of single-crystalline metastable AuGe phases in Ge nanowires , 2011, Nanotechnology.

[22]  A. Sárkány,et al.  Controlled synthesis of PDDA stabilized Au–Pd bimetallic nanostructures and their activity in hydrogenation of acetylene , 2007 .

[23]  G. Pantaleo,et al.  Activity of SiO2 supported gold-palladium catalysts in CO oxidation , 2003 .

[24]  C. Mirkin,et al.  Bottom-up synthesis of gold octahedra with tailorable hollow features. , 2011, Journal of the American Chemical Society.

[25]  A. Sárkány,et al.  Thermal and radiolysis assisted formation of Au–Pd heteroaggregates , 2008 .

[26]  E. Sutter,et al.  Giant carbon solubility in Au nanoparticles , 2011, Journal of Materials Science.

[27]  F. Ross,et al.  Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface , 2003, Nature materials.

[28]  S. Sepúlveda-Guzmán,et al.  Three-layer core/shell structure in Au-Pd bimetallic nanoparticles. , 2007, Nano letters.

[29]  C. Mirkin,et al.  Defining rules for the shape evolution of gold nanoparticles. , 2012, Journal of the American Chemical Society.

[30]  G. Hutchings,et al.  Direct synthesis of hydrogen peroxide using ceria-supported gold and palladium catalysts , 2011 .

[31]  Yasuaki Maeda,et al.  Characterization and Catalytic Activity of Core−Shell Structured Gold/Palladium Bimetallic Nanoparticles Synthesized by the Sonochemical Method , 2000 .

[32]  S. Bliznakov,et al.  Pt Monolayer on Electrodeposited Pd Nanostructures: Advanced Cathode Catalysts for PEM Fuel Cells , 2012 .

[33]  G. Hutchings,et al.  Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts , 2006, Science.

[34]  A. Alivisatos,et al.  Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. , 2009, Nano letters.

[35]  Jillian F Banfield,et al.  Direction-Specific Interactions Control Crystal Growth by Oriented Attachment , 2012, Science.

[36]  L. Guczi,et al.  AuPd bimetallic nanoparticles on TiO2: XRD, TEM, in situ EXAFS studies and catalytic activity in CO oxidation , 2003 .

[37]  Z. Karpiński,et al.  Hydrodechlorination of CCl2F2 (CFC-12) over silica-supported palladium–gold catalysts , 2001 .

[38]  Bruce Dunn,et al.  In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. , 2012, ACS nano.

[39]  H. Remita,et al.  Dose Rate Effect on Bimetallic Gold-Palladium Cluster Structure , 2003 .

[40]  Hui Zhang,et al.  Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics. , 2012, Angewandte Chemie.

[41]  A. Villa,et al.  Bimetallic gold/palladium catalysts for the selective liquid phase oxidation of glycerol , 2007 .

[42]  S. Dillon,et al.  Challenges associated with in-situ TEM in environmental systems: The case of silver in aqueous solutions , 2012 .

[43]  A. Henglein,et al.  Reduction of palladium (II) in aqueous solution: stabilization and reactions of an intermediate cluster and palladium colloid formation , 1992 .

[44]  Younan Xia,et al.  Controlling the size and morphology of Au@Pd core-shell nanocrystals by manipulating the kinetics of seeded growth. , 2012, Chemistry.

[45]  E. Sutter,et al.  Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires. , 2008, Nano letters.

[46]  E. Sutter,et al.  Size-dependent phase diagram of nanoscale alloy drops used in vapor--liquid--solid growth of semiconductor nanowires. , 2010, ACS nano.

[47]  D. Kolb,et al.  Initial stages of Pd deposition on Au(hkl) , 2000 .

[48]  M. Mecklenburg,et al.  Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[49]  G. Hutchings,et al.  Palladium and gold-palladium catalysts for the direct synthesis of hydrogen peroxide. , 2008, Angewandte Chemie.

[50]  W. Cai,et al.  Ultrasonic synthesis and optical properties of Au/Pd bimetallic nanoparticles in ethylene glycol , 2003 .

[51]  J. Keene Absorption Spectra in Irradiated Water and Some Solutions: Optical Absorptions in Irradiated Water , 1963, Nature.

[52]  B. Keita,et al.  Bimetallic Palladium−Gold Nanostructures: Application in Ethanol Oxidation , 2009 .

[53]  G. Buxton,et al.  Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution , 1988 .

[54]  C. Louis,et al.  Selective Hydrogenation of 1,3-Butadiene in the Presence of an Excess of Alkenes over Supported Bimetallic Gold−Palladium Catalysts , 2010 .

[55]  D. Kolb,et al.  Initial stages of Pd deposition on Au(hkl) Part I: Pd on Au(111) , 1999 .

[56]  D. Su,et al.  Bimetallic Gold/Palladium Catalysts: Correlation between Nanostructure and Synergistic Effects , 2008 .

[57]  James E. Evans,et al.  Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. , 2011, Nano letters.

[58]  O. Link,et al.  Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. , 2010, Nature chemistry.

[59]  M. José-Yacamán,et al.  A truncated icosahedral structure observed in gold nanoparticles , 2000 .

[60]  S. Whitelam,et al.  Real-Time Imaging of Pt3Fe Nanorod Growth in Solution , 2012, Science.

[61]  Ququan Wang,et al.  Symmetric and asymmetric Au-AgCdSe hybrid nanorods. , 2012, Nano letters.

[62]  David J. Smith,et al.  High resolution studies of small particles of gold and silver. I. Multiply-twinned particles , 1981 .