Comparing the intestinal transcriptome of Meishan and Large White piglets during late fetal development reveals genes involved in glucose and lipid metabolism and immunity as valuable clues of intestinal maturity
暂无分享,去创建一个
Laurence Liaubet | Valentin Voillet | Hélène Quesnel | Magali SanCristobal | Laurianne Canario | M. Sancristobal | L. Liaubet | Y. Lippi | Yingzhi Yao | V. Voillet | M. Père | Y. Billon | L. Canario | H. Quesnel | G. Boudry | L. Gress | I. Le Huërou-Luron | Pierre Mormède | Samir Dou | V. Romé | Marie-Christine Père | Yvon Billon | Ying Yao | Maeva Jegou | Samir Dou | Véronique Romé | Yannick Lippi | Gaëlle Boudry | Laure Gress | Nathalie Iannucelli | Isabelle Le Huërou-Luron | P. Mormède | Maëva Jégou | Nathalie Iannucelli
[1] E. Knol,et al. Prenatal development as a predisposing factor for perinatal losses in pigs. , 2020, Reproduction (Cambridge, England) Supplement.
[2] S. Oddie,et al. Slow advancement of enteral feed volumes to prevent necrotising enterocolitis in very low birth weight infants. , 2017, The Cochrane database of systematic reviews.
[3] A. Spittler,et al. Reduced TNF‐α response in preterm neonates is associated with impaired nonclassic monocyte function , 2016, Journal of leukocyte biology.
[4] D. Val-Laillet,et al. Critical review evaluating the pig as a model for human nutritional physiology , 2016, Nutrition Research Reviews.
[5] Joy E. Lawn,et al. Levels and Causes of Mortality under Age Five Years , 2016 .
[6] A. Stevens,et al. The metabolomics of necrotising enterocolitis in preterm babies: an exploratory study , 2016, The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians.
[7] A. Maheshwari. Immunologic and Hematological Abnormalities in Necrotizing Enterocolitis. , 2015, Clinics in perinatology.
[8] J. Ule,et al. HIF-driven SF3B1 induces KHK-C to enforce fructolysis and heart disease , 2015, Nature.
[9] J. Miles,et al. Placental accommodations for transport and metabolism during intra-uterine crowding in pigs , 2014, Journal of Animal Science and Biotechnology.
[10] M. Sancristobal,et al. Muscle transcriptomic investigation of late fetal development identifies candidate genes for piglet maturity , 2014, BMC Genomics.
[11] J. Neu. Necrotizing Enterocolitis: The Mystery Goes On , 2014, Neonatology.
[12] Guoyao Wu,et al. Temporal proteomic analysis reveals defects in small-intestinal development of porcine fetuses with intrauterine growth restriction. , 2014, The Journal of nutritional biochemistry.
[13] B. Stoll,et al. Dual purpose use of preterm piglets as a model of pediatric GI disease. , 2014, Veterinary immunology and immunopathology.
[14] Mun Chun Chan,et al. The many roles of PGC-1α in muscle--recent developments. , 2014, Metabolism: clinical and experimental.
[15] I. Koutroubakis,et al. Multipotent role of platelets in inflammatory bowel diseases: a clinical approach. , 2014, World journal of gastroenterology.
[16] J. Neu,et al. Decoding the enigma of necrotizing enterocolitis in premature infants. , 2014, Pathophysiology : the official journal of the International Society for Pathophysiology.
[17] Andreas Krämer,et al. Causal analysis approaches in Ingenuity Pathway Analysis , 2013, Bioinform..
[18] M. Père,et al. Spontaneous intra-uterine growth restriction modulates the endocrine status and the developmental expression of genes in porcine fetal and neonatal adipose tissue. , 2013, General and comparative endocrinology.
[19] B. Stoll,et al. Invited review: the preterm pig as a model in pediatric gastroenterology. , 2013, Journal of animal science.
[20] J. Wan,et al. Premature Delivery Reduces Intestinal Cytoskeleton, Metabolism, and Stress Response Proteins in Newborn Formula-Fed Pigs , 2013, Journal of pediatric gastroenterology and nutrition.
[21] Runsheng Li,et al. Breed-Dependent Transcriptional Regulation of 5′-Untranslated GR (NR3C1) Exon 1 mRNA Variants in the Liver of Newborn Piglets , 2012, PloS one.
[22] Zhihua Jiang,et al. Coordinated miRNA/mRNA Expression Profiles for Understanding Breed-Specific Metabolic Characters of Liver between Erhualian and Large White Pigs , 2012, PloS one.
[23] Guoyao Wu,et al. Functional roles of fructose , 2012, Proceedings of the National Academy of Sciences.
[24] Alberto D. Pascual-Montano,et al. GeneCodis3: a non-redundant and modular enrichment analysis tool for functional genomics , 2012, Nucleic Acids Res..
[25] S. Rautava,et al. TGF-&bgr;2 Induces Maturation of Immature Human Intestinal Epithelial Cells and Inhibits Inflammatory Cytokine Responses Induced Via the NF-&kgr;B Pathway , 2012, Journal of pediatric gastroenterology and nutrition.
[26] N. Vain,et al. Hyperglycaemia in preterm neonates: what to know, what to do. , 2011, Early human development.
[27] J. Neu,et al. Ischemia-reperfusion and neonatal intestinal injury. , 2011, The Journal of pediatrics.
[28] D. Sabatini,et al. mTOR: from growth signal integration to cancer, diabetes and ageing , 2010, Nature Reviews Molecular Cell Biology.
[29] T. Vuocolo,et al. A gene network switch enhances the oxidative capacity of ovine skeletal muscle during late fetal development , 2010, BMC Genomics.
[30] I. Le Huërou-Luron,et al. Intrauterine growth restriction modifies the developmental pattern of intestinal structure, transcriptomic profile, and bacterial colonization in neonatal pigs. , 2010, The Journal of nutrition.
[31] M. Patti,et al. Dual modulation of both lipid oxidation and synthesis by peroxisome proliferator‐activated receptor‐γ coactivator‐1α and ‐1β in cultured myotubes , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
[32] H. Nauwynck,et al. Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy. , 2010, Molecular immunology.
[33] A. Thomson,et al. Ontogeny, growth and development of the small intestine: Understanding pediatric gastroenterology. , 2010, World journal of gastroenterology.
[34] S. Tsai,et al. Characterization of Conserved and Nonconserved Imprinted Genes in Swine1 , 2009, Biology of reproduction.
[35] Ignacio González,et al. integrOmics: an R package to unravel relationships between two omics datasets , 2009, Bioinform..
[36] J. Mei,et al. The prenatal porcine intestine has low transforming growth factor-beta ligand and receptor density and shows reduced trophic response to enteral diets. , 2009, American journal of physiology. Regulatory, integrative and comparative physiology.
[37] C David,et al. Estimation of genetic trends from 1977 to 1998 of body composition and physiological state of Large White pigs at birth. , 2007, Animal : an international journal of animal bioscience.
[38] C. Gaskins,et al. A direct method for fatty acid methyl ester synthesis: application to wet meat tissues, oils, and feedstuffs. , 2007, Journal of animal science.
[39] Jun Sun,et al. Developmentally regulated tumor necrosis factor-α induced nuclear factor-κB activation in intestinal epithelium , 2007 .
[40] A. Prusa,et al. Immaturity of infection control in preterm and term newborns is associated with impaired toll-like receptor signaling. , 2007, The Journal of infectious diseases.
[41] J. Lunney,et al. Gene expression profiling in Salmonella Choleraesuis-infected porcine lung using a long oligonucleotide microarray , 2006, Mammalian Genome.
[42] M. Hornef,et al. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells , 2006, The Journal of experimental medicine.
[43] J. L. Dividich,et al. Early Weaning Stimulates Intestinal Brush Border Enzyme Activities in Piglets, Mainly at the Posttranscriptional Level , 2005, Journal of pediatric gastroenterology and nutrition.
[44] P. Zimmermann,et al. Nuclear speckles and nucleoli targeting by PIP2–PDZ domain interactions , 2005, The EMBO journal.
[45] D. Tamandl,et al. Monocyte Toll-Like Receptor 4 Expression and LPS-Induced Cytokine Production Increase during Gestational Aging , 2005, Pediatric Research.
[46] S. Cousens,et al. 4 million neonatal deaths: When? Where? Why? , 2005, The Lancet.
[47] J. Orenstein,et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. , 2005, The Journal of clinical investigation.
[48] W. Walker,et al. Glucocorticoid responsiveness in developing human intestine: possible role in prevention of necrotizing enterocolitis. , 2005, American journal of physiology. Gastrointestinal and liver physiology.
[49] J. Thorp,et al. Intrauterine growth restriction increases morbidity and mortality among premature neonates. , 2004, American journal of obstetrics and gynecology.
[50] Marc Montminy,et al. PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3 , 2004, Nature Medicine.
[51] R. Buddington,et al. Prenatal Development of Gastrointestinal Function in the Pig and the Effects of Fetal Esophageal Obstruction , 2002, Pediatric Research.
[52] E. Knol,et al. Fetal development in the pig in relation to genetic merit for piglet survival. , 2002, Journal of animal science.
[53] F. Speleman,et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes , 2002, Genome Biology.
[54] R. Derijk,et al. Glucocorticoid receptor variants: clinical implications , 2002, The Journal of Steroid Biochemistry and Molecular Biology.
[55] A. Fowden,et al. How does the foetal gastrointestinal tract develop in preparation for enteral nutrition after birth , 2000 .
[56] D. Ménard,et al. Developmental aspects of lipid and lipoprotein synthesis and secretion in human gut , 2000, Microscopy research and technique.
[57] A. Mulberg,et al. Development of the human gastrointestinal tract: twenty years of progress. , 1999, Gastroenterology.
[58] J. Tyson,et al. Rapid versus slow rate of advancement of feedings for promoting growth and preventing necrotizing enterocolitis in parenterally fed low-birth-weight infants. , 1998, The Cochrane database of systematic reviews.
[59] P. Morméde,et al. Determination of catecholamines and methoxycatecholamines excretion patterns in pig and rat urine by ion-exchange liquid chromatography with electrochemical detection. , 1997, Journal of chromatography. B, Biomedical sciences and applications.
[60] J. Bidanel,et al. Genetic Study of Behavioral and Pituitary-Adrenocortical Reactivity in Response to an Environmental Challenge in Pigs , 1997, Physiology & Behavior.
[61] Huan Liu,et al. Feature Selection for Classification , 1997, Intell. Data Anal..
[62] N. Kretchmer,et al. Nutritional Adaptation of the Gastrointestinal Tract of the Newborn , 1984 .
[63] F. Smedes,et al. Simple and fast solvent extraction system for selective and quantitative isolation of adrenaline, noradrenaline and dopamine from plasma and urine. , 1982, Journal of chromatography.
[64] M. Stone. Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .
[65] Seymour Geisser,et al. The Predictive Sample Reuse Method with Applications , 1975 .
[66] Oliver H. Lowry,et al. Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.
[67] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[68] W. McGuire,et al. Slow advancement of enteral feed volumes to prevent necrotising enterocolitis in very low birth weight infants. , 2013, The Cochrane database of systematic reviews.
[69] N. Ambalavanan,et al. TGF-β2 suppresses macrophage cytokine production and mucosal inflammatory responses in the developing intestine. , 2011, Gastroenterology.
[70] Philippe Besse,et al. Statistical Applications in Genetics and Molecular Biology A Sparse PLS for Variable Selection when Integrating Omics Data , 2011 .
[71] Marc Montminy,et al. PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. , 2004, Nature medicine.
[72] M. Père. Materno-foetal exchanges and utilisation of nutrients by the foetus: comparison between species. , 2003, Reproduction, nutrition, development.
[73] G. Randall,et al. Tissue glycogen and blood glucose and fructose levels in the pig fetus during the second half of gestation. , 1976, Biology of the neonate.