KPII: Cauchy–Jost function, Darboux transformations and totally nonnegative matrices
暂无分享,去创建一个
[1] M. Boiti,et al. Cauchy–Jost function and hierarchy of integrable equations , 2015, 1508.02229.
[2] Vladimir E. Zakharov,et al. A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I , 1974 .
[3] L. V. Bogdanov. Analytic-Bilinear Approach to Integrable Hierarchies , 1999 .
[4] M. Boiti,et al. Properties of the solitonic potentials of the heat operator , 2010, 1011.2594.
[5] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[6] Y. Kodama,et al. KP solitons, total positivity, and cluster algebras , 2011, Proceedings of the National Academy of Sciences.
[7] Flag Spaces in KP Theory and Virasoro Action on det $D_{j}$ and Segal-Wilson $\tau$-function , 1991, math-ph/9804019.
[8] M. Boiti,et al. Towards an inverse scattering theory for non-decaying potentials of the heat equation , 2001, nlin/0101030.
[9] Y. Kodama. KP solitons in shallow water , 2010, 1004.4607.
[10] A. Orlov,et al. Virasoro Action on Riemann Surfaces, Grassmannians, det \( {\overline \partial _J} \) and Segal-Wilson τ-Function , 1989 .
[11] Lionel Blumenthal,et al. ORLOV , 1978, The Lancet.
[12] V. Matveev,et al. Darboux Transformations and Solitons , 1992 .
[13] Yuji Kodama,et al. Soliton Solutions of the KP Equation and Application to Shallow Water Waves , 2009, 0902.4433.
[14] Analytic-bilinear approach to integrable hierarchies. I. Generalized KP hierarchy , 1996, solv-int/9609009.