Effect of TiO2 crystallinity on the photocatalytic reduction of nitrogen and carbon dioxide

[1]  A. Morawski,et al.  Effective green ammonia synthesis from gaseous nitrogen and CO2 saturated-water vapour utilizing a novel photocatalytic reactor , 2022, Chemical Engineering Journal.

[2]  A. Morawski,et al.  Artificial Solar Light-Driven APTES/TiO2 Photocatalysts for Methylene Blue Removal from Water , 2022, Molecules.

[3]  A. Morawski,et al.  CO2 Reduction to Valuable Chemicals on TiO2-Carbon Photocatalysts Deposited on Silica Cloth , 2021, Catalysts.

[4]  Yuen Wu,et al.  Surface brønsted-lewis dual acid sites for high-efficiency dinitrogen photofixation in pure water , 2021, Journal of Energy Chemistry.

[5]  Lizhi Zhang,et al.  Rare Earth La Single Atoms Supported MoO3-x for Efficient Photocatalytic Nitrogen Fixation , 2021, Applied Catalysis B: Environmental.

[6]  Ruixin X. Tang,et al.  Rutile TiO2 Nanoparticles with Oxygen Vacancy for Photocatalytic Nitrogen Fixation , 2021, ACS Applied Nano Materials.

[7]  A. Emeline,et al.  Photoinduced hydrophilic behavior of TiO2 thin film on Si substrate , 2021 .

[8]  Minsu Cho,et al.  Effects of Calcination Temperature on the Phase Composition, Photocatalytic Degradation, and Virucidal Activities of TiO2 Nanoparticles , 2021, ACS omega.

[9]  Weiwen Wang,et al.  TiO2 doped HKUST-1/CM film in the three-phase photocatalytic ammonia synthesis system , 2021, Ceramics International.

[10]  M. Augustyniak-Jabłokow,et al.  Localization of conduction electrons in hydrothermally reduced graphene oxide: electron paramagnetic resonance studies , 2020 .

[11]  C. Schramm High temperature ATR-FTIR characterization of the interaction of polycarboxylic acids and organotrialkoxysilanes with cellulosic material. , 2020, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[12]  F. Pan,et al.  Wavelength-Dependent Solar N2 Fixation into Ammonia and Nitrate in Pure Water , 2020, Research.

[13]  Xiaoxiang Xu,et al.  Au nanocrystals decorated TiO2 nanotubes for photocatalytic nitrogen fixation into ammonia , 2020 .

[14]  A. Fujishima,et al.  Applications of photocatalytic titanium dioxide-based nanomaterials in sustainable agriculture , 2019, Journal of Photochemistry and Photobiology C: Photochemistry Reviews.

[15]  J. Nedeljković,et al.  Visible-light-responsive surface-modified TiO2 powder with 4-chlorophenol: A combined experimental and DFT study , 2019, Optical Materials.

[16]  R. Schomäcker,et al.  Photocatalytic reduction of carbon dioxide over Cu/TiO2 photocatalysts , 2018, Environmental Science and Pollution Research.

[17]  Fuqiang Huang,et al.  Efficient Photocatalytic Reduction of CO2 Using Carbon‐Doped Amorphous Titanium Oxide , 2018, ChemCatChem.

[18]  Rengui Li Photocatalytic nitrogen fixation: An attractive approach for artificial photocatalysis , 2018, Chinese Journal of Catalysis.

[19]  D. Meroni,et al.  A Close Look at the Structure of the TiO2-APTES Interface in Hybrid Nanomaterials and Its Degradation Pathway: An Experimental and Theoretical Study , 2016, The journal of physical chemistry. C, Nanomaterials and interfaces.

[20]  Misook Kang,et al.  Effective Carbon Dioxide Photoreduction over Metals (Fe-, Co-, Ni-, and Cu-) Incorporated TiO2/Basalt Fiber Films , 2016 .

[21]  A. Morawski,et al.  Preparation and characterisation of TiO2 thermally modified with cyclohexane vapours , 2016 .

[22]  G. Colón,et al.  Effect of TiO2 acidic pre-treatment on the photocatalytic properties for phenol degradation , 2006 .

[23]  Haiping Li,et al.  Surface-layer bromine doping enhanced generation of surface oxygen vacancies in bismuth molybdate for efficient photocatalytic nitrogen fixation , 2022, Applied Catalysis B: Environmental.

[24]  Junjie Huang,et al.  Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation , 2020, Acta Physico Chimica Sinica.