Linear Time Encoding of LDPC Codes

In this paper, we propose a linear complexity encoding method for arbitrary LDPC codes. We start from a simple graph-based encoding method ¿label-and-decide.¿ We prove that the ¿label-and-decide¿ method is applicable to Tanner graphs with a hierarchical structure-pseudo-trees-and that the resulting encoding complexity is linear with the code block length. Next, we define a second type of Tanner graphs-the encoding stopping set. The encoding stopping set is encoded in linear complexity by a revised label-and-decide algorithm-the ¿label-decide-recompute.¿ Finally, we prove that any Tanner graph can be partitioned into encoding stopping sets and pseudo-trees. By encoding each encoding stopping set or pseudo-tree sequentially, we develop a linear complexity encoding method for general low-density parity-check (LDPC) codes where the encoding complexity is proved to be less than 4 ·M ·((k¿- 1), where M is the number of independent rows in the parity-check matrix and k¿ represents the mean row weight of the parity-check matrix.

[1]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[2]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[3]  Alex J. Grant,et al.  Iterative encoding of low-density parity-check codes , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[4]  Sarah J. Johnson,et al.  A family of irregular LDPC codes with low encoding complexity , 2003, IEEE Communications Letters.

[5]  Rüdiger L. Urbanke,et al.  Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[6]  T. Mittelholzer Efficient encoding and minimum distance bounds of Reed-Solomon-type array codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[7]  José M. F. Moura,et al.  TS-LDPC Codes: Turbo-Structured Codes With Large Girth , 2007, IEEE Transactions on Information Theory.

[8]  Jose M. F. Moura,et al.  Efficient encoding of cycle codes: a graphical approach , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[9]  Shu Lin,et al.  Low-density parity-check codes based on finite geometries: A rediscovery and new results , 2001, IEEE Trans. Inf. Theory.

[10]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[11]  William E. Ryan,et al.  Design of efficiently encodable moderate-length high-rate irregular LDPC codes , 2004, IEEE Transactions on Communications.

[12]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[13]  David Haley,et al.  High Rate Reversible LDPC Codes , 2004 .

[14]  Alex J. Grant,et al.  Improved reversible LDPC codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[15]  Simon Litsyn,et al.  Approximately Lower Triangular Ensembles of LDPC Codes With Linear Encoding Complexity , 2006, IEEE Transactions on Information Theory.

[16]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[17]  Zongwang Li,et al.  Efficient encoding of quasi-cyclic low-density parity-check codes , 2006, IEEE Trans. Commun..