Design and analysis of stochastic local search for the multiobjective traveling salesman problem

Stochastic local search (SLS) algorithms are typically composed of a number of different components, each of which should contribute significantly to the final algorithm's performance. If the goal is to design and engineer effective SLS algorithms, the algorithm developer requires some insight into the importance and the behavior of possible algorithmic components. In this paper, we analyze algorithmic components of SLS algorithms for the multiobjective travelling salesman problem. The analysis is done using a careful experimental design for a generic class of SLS algorithms for multiobjective combinatorial optimization. Based on the insights gained, we engineer SLS algorithms for this problem. Experimental results show that these SLS algorithms, despite their conceptual simplicity, outperform a well-known memetic algorithm for a range of benchmark instances with two and three objectives.

[1]  Andrzej Jaszkiewicz,et al.  Pareto memetic algorithm with path relinking for bi-objective traveling salesperson problem , 2009, Eur. J. Oper. Res..

[2]  Paolo Serafini,et al.  Some Considerations about Computational Complexity for Multi Objective Combinatorial Problems , 1987 .

[3]  Carlos M. Fonseca,et al.  Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function , 2001, EMO.

[4]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[5]  Jon Jouis Bentley,et al.  Fast Algorithms for Geometric Traveling Salesman Problems , 1992, INFORMS J. Comput..

[6]  Thomas Stützle,et al.  A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem , 2007, Eur. J. Oper. Res..

[7]  Steve Y. Chiu,et al.  Fine-tuning a tabu search algorithm with statistical tests , 1998 .

[8]  Thomas Stützle,et al.  A Two-Phase Local Search for the Biobjective Traveling Salesman Problem , 2003, EMO.

[9]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[10]  M. Ehrgott Approximation algorithms for combinatorial multicriteria optimization problems , 2000 .

[11]  Evripidis Bampis,et al.  Approximating the Pareto curve with local search for the bicriteria TSP(1, 2) problem , 2004, Theor. Comput. Sci..

[12]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[13]  Thomas Stützle,et al.  Stochastic Local Search Algorithms for Multiobjective Combinatorial Optimization , 2006, Handbook of Approximation Algorithms and Metaheuristics.

[14]  Keld Helsgaun,et al.  An effective implementation of the Lin-Kernighan traveling salesman heuristic , 2000, Eur. J. Oper. Res..

[15]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[16]  Michael Pilegaard Hansen Use of Substitute Scalarizing Functions to Guide a Local Search Based Heuristic: The Case of moTSP , 2000, J. Heuristics.

[17]  David S. Johnson,et al.  Experimental Analysis of Heuristics for the STSP , 2007 .

[18]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[19]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[20]  Thomas Stützle,et al.  Using Experimental Design to Analyze Stochastic Local Search Algorithms for Multiobjective Problems , 2007, Metaheuristics.

[21]  Evripidis Bampis,et al.  A Dynasearch Neighborhood for the Bicriteria Traveling Salesman Problem , 2004, Metaheuristics for Multiobjective Optimisation.

[22]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study (Princeton Series in Applied Mathematics) , 2007 .

[23]  Pedro Castro Borges CHESS—Changing Horizon Efficient Set Search: A Simple Principle for Multiobjective Optimization , 2000, J. Heuristics.

[24]  Bernd Freisleben,et al.  A genetic local search algorithm for solving symmetric and asymmetric traveling salesman problems , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[25]  X. Gandibleux,et al.  Approximative solution methods for multiobjective combinatorial optimization , 2004 .

[26]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[27]  Thomas Sty Clusters of Non-dominated Solutions in Multiobjective Combinatorial Optimization. , 2006 .

[28]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[29]  Peter J. Fleming,et al.  Assessing the performance of multiobjective genetic algorithms for optimization of a batch process scheduling problem , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[30]  J. Hsu Multiple Comparisons: Theory and Methods , 1996 .

[31]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[32]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[33]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[34]  Thomas Stützle,et al.  Hybrid Population-Based Algorithms for the Bi-Objective Quadratic Assignment Problem , 2006, J. Math. Model. Algorithms.

[35]  Horst W. Hamacher,et al.  On spanning tree problems with multiple objectives , 1994, Ann. Oper. Res..

[36]  Paul Klingsberg,et al.  A Gray Code for Compositions , 1982, J. Algorithms.

[37]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[38]  Thomas Stützle,et al.  Analysing the Run-Time Behaviour of Iterated Local Search for the Travelling Salesman Problem , 2002 .

[39]  C. Keller Algorithms to solve the orienteering problem: A comparison , 1989 .

[40]  I. Sigal Algorithms for solving the two-criterion large-scale travelling salesman problem , 1994 .

[41]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[42]  Abraham P. Punnen,et al.  The traveling salesman problem and its variations , 2007 .

[43]  V. Emelichev,et al.  On cardinality of the set of alternatives in discrete many-criterion problems , 1992 .

[44]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[45]  Carlos M. Fonseca,et al.  A Study of Examination Timetabling with Multiobjective Evolutionary Algorithms , 2001 .

[46]  Xavier Gandibleux,et al.  A Tabu Search Procedure to Solve MultiObjective Combinatorial Optimization Problems , 1997 .

[47]  W. J. Conover,et al.  Practical Nonparametric Statistics , 1972 .