Green light generation based on periodically poled LiNbO3 waveguides

Periodically poled lithium niobate (PPLN) waveguide based green lasers have attracted much attention in the past years due to their excellent properties, such as high efficiency and small size. The potential application fields include laser display, bio-instrumentation, undersea communication and so on. In this paper, recent progresses on the development of PPLN waveguide based green lasers are introduced and reviewed.

[1]  W. Marsden I and J , 2012 .

[2]  Andreas Tünnermann,et al.  Fabrication of ridge waveguides in zinc-substituted lithium niobate by means of ion-beam enhanced etching. , 2008, Optics letters.

[3]  M. Fejer,et al.  Green-induced infrared absorption in MgO doped LiNbO3 , 2001 .

[4]  K. Sakai,et al.  Planar-waveguide quasi-phase matched second-harmonic generation device in Y-cut MgO-doped LiNbO3 , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[5]  W Sohler,et al.  Local periodic poling of ridges and ridge waveguides on X- and Y-Cut LiNbO3 and its application for second harmonic generation. , 2009, Optics express.

[6]  D. Yoon,et al.  Asymmetry ridge structure fabrication and reactive ion etching of LiNbO3 , 2005 .

[7]  C. White,et al.  Ridged LiNbO/sub 3/ modulators fabricated by a novel oxygen-ion implant/wet-etch technique , 2004, Journal of Lightwave Technology.

[8]  Uwe Strauss,et al.  Progress of blue and green InGaN laser diodes , 2010, OPTO.

[9]  K. Mizuuchi,et al.  Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgO:LiNbO3. , 2003, Optics letters.

[10]  I. Kaminow,et al.  Metal‐diffused optical waveguides in LiNbO3 , 1974 .

[11]  Yoshihito Hirano,et al.  High-Power, Highly Efficient Second-Harmonic Generation in a Periodically Poled MgO:LiNbO3 Planar Waveguide , 2009 .

[12]  Chung-En Zah,et al.  Reliable high-power 1060nm DBR lasers for second-harmonic generation , 2007 .

[13]  Takeshi Umeki,et al.  Highly Efficient Wavelength Converter Using Direct-Bonded PPZnLN Ridge Waveguide , 2010, IEEE Journal of Quantum Electronics.

[14]  Yi Gan,et al.  Efficient green-light generation by proton-exchanged periodically poled MgO:LiNbO3 ridge waveguide. , 2011, Optics letters.

[15]  Way-Seen Wang,et al.  Lithium niobate ridge waveguides by nickel diffusion and proton-exchanged wet etching , 1995 .

[16]  Tadashi Kishimoto,et al.  Periodically Poled MgO-doped Stoichiometric LiNbO$_{3}$ Wavelength Converter With Ridge-Type Annealed Proton-Exchanged Waveguide , 2011, IEEE Photonics Technology Letters.

[17]  Feng-Lei Hong,et al.  Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide. , 2009, Optics express.

[18]  K. Katayama,et al.  531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar {202̄1} Free-Standing GaN Substrates , 2009 .

[19]  J. Veselka,et al.  Proton exchange for high‐index waveguides in LiNbO3 , 1982 .

[20]  Takeshi Umeki,et al.  High-power mid-infrared wavelength generation using difference frequency generation in damage-resistant Zn:LiNb0 3 waveguide , 2008 .

[21]  Feng Chen,et al.  Scanning confocal fluorescence imaging and micro-Raman investigations of oxygen implanted channel waveguides in Nd:MgO:LiNbO3 , 2008 .

[22]  T. Taira,et al.  High-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser , 2003 .

[23]  S. Denbaars,et al.  AlGaN-Cladding Free Green Semipolar GaN Based Laser Diode with a Lasing Wavelength of 506.4 nm , 2009 .

[24]  Robert S. Feigelson,et al.  Fabrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate , 1992 .

[25]  K. Magari,et al.  Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides , 2006 .

[26]  Chung-En Zah,et al.  304 mW green light emission by frequency doubling of a high-power 1060-nm DBR semiconductor laser diode , 2008, SPIE OPTO.

[27]  Jian Sun,et al.  Annealed proton-exchanged LiNbO3 ridge waveguide for photonics application , 2010, Photonics North.

[28]  H. Suzuki,et al.  0-dB wavelength conversion using direct-bonded QPM-Zn : LiNbO/sub 3/ ridge waveguide , 2005, IEEE Photonics Technology Letters.

[29]  R. Chen,et al.  Thermally annealed single-mode proton-exchanged channel-waveguide cutoff modulator. , 1986, Optics letters.

[30]  Katsuaki Magari,et al.  CH4 monitoring in ambient air by communication band laser diode based difference frequency generation in a quasi-phase-matched LiNbO3 waveguide , 2006 .

[31]  Yoshihito Hirano,et al.  Master-oscillator power-amplifier scheme for efficient green-light generation in a planar MgO:PPLN waveguide. , 2008, Optics letters.

[32]  Way-Seen Wang,et al.  Lithium niobate ridge waveguides by nickel diffusion and proton-exchanged wet etching , 1995, IEEE Photonics Technology Letters.

[33]  S. Kurimura,et al.  Quasi-phase-matched adhered ridge waveguide in LiNbO3 , 2006 .

[34]  S. Lutgen,et al.  True Green Laser Diodes at 524 nm with 50 mW Continuous Wave Output Power on c-Plane GaN , 2010 .

[35]  Takeshi Umeki,et al.  Widely tunable 2.3 μm-band difference frequency generation in quasiphase-matched LiNbO3 ridge waveguide using index dispersion control , 2007 .