Multi-technique characterization of the precipitates in thermally aged and neutron irradiated Fe-Cu and Fe-Cu-Mn model alloys: Atom probe tomography reconstruction implications

[1]  C. Parish,et al.  Using complimentary microscopy methods to examine Ni-Mn-Si-precipitates in highly-irradiated reactor pressure vessel steels , 2017 .

[2]  G. Schmitz,et al.  Towards an accurate volume reconstruction in atom probe tomography. , 2016, Ultramicroscopy.

[3]  K. Nordlund,et al.  Atomistic simulations of field assisted evaporation in atom probe tomography , 2016 .

[4]  F Vurpillot,et al.  Modeling Atom Probe Tomography: A review. , 2015, Ultramicroscopy.

[5]  S. B. Biner,et al.  Preferential Cu precipitation at extended defects in bcc Fe: An atomistic study , 2015 .

[6]  M. G. Burke,et al.  Uncertainties and assumptions associated with APT and SANS characterisation of irradiation damage in RPV steels , 2014 .

[7]  A. Ruban,et al.  Role of magnetism in Cu precipitation in alpha-Fe , 2013 .

[8]  Baptiste Gault,et al.  The rise of computational techniques in atom probe microscopy , 2013 .

[9]  Baptiste Gault,et al.  Atom probe tomography spatial reconstruction: Status and directions , 2013, 1510.02843.

[10]  S. Broderick,et al.  Mapping energetics of atom probe evaporation events through first principles calculations. , 2013, Ultramicroscopy.

[11]  J. de Boor,et al.  Data analysis for Seebeck coefficient measurements. , 2013, The Review of scientific instruments.

[12]  David J. Larson,et al.  Local Electrode Atom Probe Tomography: A User's Guide , 2013 .

[13]  Michael K Miller,et al.  Atom Probe Tomography: Analysis at the Atomic Level , 2012 .

[14]  Baptiste Gault,et al.  Atom Probe Microscopy , 2012 .

[15]  N. J. Cunningham Study of the Structure, Composition, and Stability of Yttrium-Ti-Oxygen nm-Scale Features in Nano-Structured Ferritic Alloys , 2012 .

[16]  M. I. Pascuet,et al.  Modeling the first stages of Cu precipitation in α-Fe using a hybrid atomistic kinetic Monte Carlo approach. , 2011, The Journal of chemical physics.

[17]  F. Bergner,et al.  Characterization of neutron-irradiated ferritic model alloys and a RPV steel from combined APT, SANS, TEM and PAS analyses , 2010 .

[18]  Guido Schmitz,et al.  On the Field Evaporation Behavior of Dielectric Materials in Three-Dimensional Atom Probe: A Numeric Simulation , 2010, Microscopy and Microanalysis.

[19]  D. Blavette,et al.  Clustering and Local Magnification Effects in Atom Probe Tomography: A Statistical Approach , 2010, Microscopy and Microanalysis.

[20]  Emmanuelle A. Marquis,et al.  Applications of atom-probe tomography to the characterisation of solute behaviours , 2010 .

[21]  P. Staron,et al.  A critical consideration of magnetism and composition of (bcc) Cu precipitates in (bcc) Fe , 2010 .

[22]  Thomas Jourdan,et al.  Influence of cluster mobility on Cu precipitation in α-Fe: A cluster dynamics modeling , 2010 .

[23]  Randy K Nanstad,et al.  Predictive reactor pressure vessel steel irradiation embrittlement models: Issues and opportunities , 2009 .

[24]  G. D. Smith,et al.  Determining the composition of small features in atom probe: bcc Cu-rich precipitates in an Fe-rich matrix. , 2009, Ultramicroscopy.

[25]  G. R. Odette,et al.  On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys , 2009 .

[26]  E. Marquis,et al.  Chromatic Aberrations in the Field Evaporation Behavior of Small Precipitates , 2008, Microscopy and Microanalysis.

[27]  C. Domain,et al.  Precipitation of the FeCu system: A critical review of atomic kinetic Monte Carlo simulations , 2008 .

[28]  A. Almazouzi,et al.  Nanostructural evolution in surveillance test specimens of a commercial nuclear reactor pressure vessel studied by three-dimensional atom probe and positron annihilation , 2007 .

[29]  Michael P Moody,et al.  New Techniques for the Analysis of Fine-Scaled Clustering Phenomena within Atom Probe Tomography (APT) Data , 2007, Microscopy and Microanalysis.

[30]  Michael K Miller,et al.  Embrittlement of RPV steels: An atom probe tomography perspective , 2007 .

[31]  Michael K Miller,et al.  Invited review article: Atom probe tomography. , 2007, The Review of scientific instruments.

[32]  D. Blavette,et al.  An improved reconstruction procedure for the correction of local magnification effects in three‐dimensional atom‐probe , 2007, 0907.5067.

[33]  Luigi Debarberis,et al.  Combined thermo-electric power and resistivity measurements of embrittlement recovery in aged JRQ ferritic steel , 2006 .

[34]  David B. Williams,et al.  Quantitative characterization of nanoprecipitates in irradiated low-alloy steels: advances in the application of FEG-STEM quantitative microanalysis to real materials , 2006 .

[35]  Brian D. Wirth,et al.  Positron annihilation spectroscopy and small angle neutron scattering characterization of nanostructural features in high-nickel model reactor pressure vessel steels , 2006 .

[36]  A. Barashev,et al.  Monte Carlo modelling of Cu atom diffusion in α-Fe via the vacancy mechanism , 2006 .

[37]  G. D. Smith,et al.  Comparison of the number densities of nanosized Cu-rich precipitates in ferritic alloys measured using EELS and EDX mapping, HREM and 3DAP , 2006 .

[38]  D. Seidman,et al.  Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale , 2006 .

[39]  M. Jenkins,et al.  Determination of the Fe content of embedded Cu-rich particles in ferritic alloys using energy-filtered TEM. , 2006, Ultramicroscopy.

[40]  K. Hono,et al.  Hardening and microstructural evolution in A533B steels under high-dose electron irradiation , 2005 .

[41]  T. Yamamoto,et al.  On the effect of dose rate on irradiation hardening of RPV steels , 2005 .

[42]  Y. Nagai,et al.  Irradiation-induced vacancy and Cu aggregations in Fe–Cu model alloys of reactor pressure vessel steels: state-of-the-art positron annihilation spectroscopy , 2005 .

[43]  B. Wirth,et al.  Positron annihilation spectroscopy and small-angle neutron scattering characterization of the effect of Mn on the nanostructural features formed in irradiated Fe–Cu–Mn alloys , 2005 .

[44]  J. M. Perlado,et al.  Cu diffusion in α-Fe: determination of solute diffusivities using atomic-scale simulations , 2004 .

[45]  A. Deschamps,et al.  Comparison of Precipitation Kinetics and Strengthening in an Fe-0.8%Cu Alloy and a 0.8%Cu-containing Low-carbon Steel , 2003 .

[46]  B. Wirth,et al.  Precipitation in neutron-irradiated Fe-Cu and Fe-Cu-Mn model alloys : a comparison of APT and SANS data , 2003 .

[47]  A. Cerezo,et al.  A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. , 2003, Ultramicroscopy.

[48]  G. D. Smith,et al.  Combined atomic–scale modelling and experimental studies of nucleation in the solid state , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[49]  Jonathan M. Hyde,et al.  Microstructural evolution in medium copper low alloy steels irradiated in a pressurized water reactor and a material test reactor , 2003 .

[50]  B. Wirth,et al.  Composition and magnetic character of nanometre-size Cu precipitates in reactor pressure vessel steels: Implications for nuclear power plant lifetime extension , 2002 .

[51]  C. A. English,et al.  A model of irradiation damage in high nickel submerged arc welds , 2002 .

[52]  I. Procházka,et al.  TEM and PAS study of neutron irradiated VVER-type RPV steels , 2002 .

[53]  William Server,et al.  Microstructural characterization of irradiation-induced Cu-enriched clusters in reactor pressure vessel steels , 2001 .

[54]  Gerd Dobmann,et al.  Copper precipitates in 15 NiCuMoNb 5 (WB 36) steel : material properties and microstructure, atomistic simulation, and micromagnetic NDE techniques , 2001 .

[55]  Brian D. Wirth,et al.  Multiscale-Multiphysics Modeling of Radiation-Damaged Materials: Embrittlement of Pressure-Vessel Steels , 2001 .

[56]  Matthias Militzer,et al.  Precipitation Kinetics and Strengthening of a Fe-0.8wt%Cu Alloy , 2001 .

[57]  Y. Kawazoe,et al.  Positron confinement in ultrafine embedded particles: Quantum-dot-like state in an Fe-Cu alloy , 2000 .

[58]  P. Pareige,et al.  Thermoelectric Power: A Nondestructive Method for Monitoring Irradiation Effects in Ferritic Steels , 2000 .

[59]  C. A. English,et al.  An Analysis of the Structure of Irradiation induced Cu-enriched Clusters in Low and High Nickel Welds , 2000 .

[60]  Michael K Miller,et al.  Understanding Pressure Vessel Steels: An Atom Probe Perspective , 2000 .

[61]  G. Odette,et al.  Small Angle Neutron Scattering Study of Linde 80 RPV Welds , 1999 .

[62]  E. Little,et al.  An Analysis of Radiation Effects in Model A533B Pressure Vessel Steels Containing Copper, Phosphorus and Nickel Additions , 1999 .

[63]  G. Odette,et al.  Anomalous Hardening in Model Alloys and Steels Thermally Aged at 290°C and 350°C: Implications to Low Flux Irradiation Embrittlement , 1999 .

[64]  A. Nicol High-resolution electron microscopy studies of the precipitation of copper under neutron irradiation in an Fe-1.3WT % Cu alloy. , 1998 .

[65]  K. F. Russell,et al.  Low temperature copper solubilities in Fe–Cu–Ni , 1998 .

[66]  G. E. Lucas,et al.  Recent progress in understanding reactor pressure vessel steel embrittlement , 1998 .

[67]  Brian D. Wirth,et al.  A computational microscopy study of nanostructural evolution in irradiated pressure vessel steels , 1997 .

[68]  B. Wirth,et al.  A lattice Monte Carlo simulation of nanophase compositions and structures in irradiated pressure vessel Fe-Cu-Ni-Mn-Si steels , 1997 .

[69]  A. Lowe,et al.  Irradiation embrittlement modelling of Linde 80 weld metals , 1996 .

[70]  Timothy J. Williams,et al.  Electron Microscopy and Small Angle Neutron Scattering Study of Precipitation in Low Alloy Steel Submerged-Arc Welds , 1996 .

[71]  Lynn,et al.  Increased Elemental Specificity of Positron Annihilation Spectra. , 1996, Physical review letters.

[72]  Frédéric Soisson,et al.  Monte Carlo simulations of copper precipitation in dilute iron-copper alloys during thermal ageing and under electron irradiation , 1996 .

[73]  Brian D. Wirth,et al.  On the composition and structure of nanoprecipitates in irradiated pressure vessel steels , 1996 .

[74]  P. Pareige,et al.  APFIM investigation of clustering in neutron-irradiated FeCu alloys and pressure vessel steels , 1995 .

[75]  S. Dumbill,et al.  Irradiation-induced microstructural changes, and hardening mechanisms, in model PWR reactor pressure vessel steels , 1995 .

[76]  P. Pareige,et al.  Microstructural characterization of atom clusters in irradiated pressure vessel steels and model alloys , 1994 .

[77]  Risto M. Nieminen,et al.  Theory of Positrons in Solids and on Solid Surfaces , 1994 .

[78]  P. Hautojärvi,et al.  Positron spectroscopy of defects in metals and semiconductors , 1994 .

[79]  G. R. Odette,et al.  Radiation Induced Microstructural Evolution in Reactor Pressure Vessel Steels , 1994 .

[80]  G. Odette,et al.  The Effect of Flux on the Irradiation Hardening of Pressure Vessel Steels , 1994 .

[81]  W. Waeber,et al.  Irradiation Induced Precipitation in Model Alloys with Systematic Variation of Cu, Ni and P Content: A Small Angle Neutron Scattering Study , 1994 .

[82]  C. English,et al.  Microstructural evolution in reactor pressure vessel steels , 1993 .

[83]  M. G. Burke,et al.  An atom probe field ion microscopy study of neutron-irradiated pressure vessel steels , 1992 .

[84]  M. G. Hetherington,et al.  An Analysis of Small Clusters Formed in Thermally Aged and Irradiated FeCu and FeCuNi Model Alloys , 1990 .

[85]  D. I. Svergun,et al.  Structure Analysis by Small-Angle X-Ray and Neutron Scattering , 1987 .

[86]  M. G. Hetherington,et al.  A study of the precipitation of copper particles in a ferrite matrix , 1987 .

[87]  S. Fisher,et al.  A model for PWR pressure vessel embrittlement , 1987 .

[88]  T. Yoshitake,et al.  Magnetic Properties of Metastable bcc and fcc Fe-Cu Alloys Produced by Vapor Quenching , 1984 .

[89]  G. Odette On the dominant mechanism of irradiation embrittlement of reactor pressure vessel steels , 1983 .

[90]  L. Schetky,et al.  Copper in Iron and Steel , 1982 .

[91]  R. W. Siegel Positron Annihilation Spectroscopy , 1980 .

[92]  T. Nishizawa,et al.  Thermodynamic analysis of solubility and miscibility gap in ferromagnetic alpha iron alloys , 1979 .

[93]  David Smith,et al.  On the nature and distribution of defects in tungsten lamp wire , 1976 .

[94]  S. R. Goodman,et al.  An FIM-atom probe study of the precipitation of copper from lron-1.4 at. pct copper. Part II: Atom probe analyses , 1973 .

[95]  G. D. Vries,et al.  EXPERIMENTAL INVESTIGATION OF THE INFLUENCE OF IMPURITIES ON THE CURIE TEMPERATURE OF IRON , 1971 .