Change Detection in Synthetic Aperture Radar Images

In this paper, we introduce a new approach for detecting the changes in SAR images that is taken from same geographical areas but at different periods of time. In this particular change detecting strategy, firstly, the ratio operator is applied to the SAR images to get the difference image. Here , log ratio and gauss log ratio operator is used to get the difference image. Then the difference image is fused by DWT.Noise in the fused image is removed by NSCT, which will remove the noise while preserving the information, especially the edge information. This denoised image is converted to compressed vectors by compressed projection thus reducing the dimension .Finally the changed and unchanged region is detected by clustering using fuzzy c mean (FCM) clustering with a novel Markov Random Field (MRF) energy function which aids in modifying the membership of each pixel and thus improving the accuracy in change detection.

[1]  Lorenzo Bruzzone,et al.  An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[2]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[3]  Shunzheng Yu,et al.  A hidden semi-Markov model with missing data and multiple observation sequences for mobility tracking , 2003, Signal Process..

[4]  Daoqiang Zhang,et al.  Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation , 2007, Pattern Recognit..

[5]  Stéphane Derrode,et al.  Unsupervised SAR images change detection with hidden Markov chains on a sliding window , 2007, SPIE Remote Sensing.

[6]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[7]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[8]  Stelios Krinidis,et al.  A Robust Fuzzy Local Information C-Means Clustering Algorithm , 2010, IEEE Transactions on Image Processing.

[9]  R. Calderbank,et al.  Compressed Learning : Universal Sparse Dimensionality Reduction and Learning in the Measurement Domain , 2009 .

[10]  N. Sugiura Further analysts of the data by akaike' s information criterion and the finite corrections , 1978 .

[11]  W. Pieczynski,et al.  3 - Estimation des paramètres dans les chaînes de Markov cachées et segmentation d'images , 1995 .

[12]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[13]  Han-Xiong Li,et al.  Spatially Constrained Fuzzy-Clustering-Based Sensor Placement for Spatiotemporal Fuzzy-Control System , 2010, IEEE Transactions on Fuzzy Systems.

[14]  Petar M. Djuric,et al.  An MCMC sampling approach to estimation of nonstationary hidden Markov models , 2002, IEEE Trans. Signal Process..

[15]  Cedric Nishan Canagarajah,et al.  Compressive image fusion , 2008, 2008 15th IEEE International Conference on Image Processing.

[16]  Salah Bourennane,et al.  Unsupervised change detection on SAR images using fuzzy hidden Markov chains , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[17]  R. Garello,et al.  Estimation of sea-ice SAR clutter statistics from Pearson's system of distributions , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[18]  Lorenzo Bruzzone,et al.  Automatic analysis of the difference image for unsupervised change detection , 2000, IEEE Trans. Geosci. Remote. Sens..

[19]  J. Inglada,et al.  Lava flow mapping during the Nyiragongo January, 2002 eruption over the city of Goma (D.R. Congo) in the frame of the international charter space and major disasters , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[20]  Stéphane Derrode,et al.  Contextual Estimation Of Hidden Markov Chains With Application To Image Segmentation , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[21]  Allan Aasbjerg Nielsen,et al.  The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data , 2007, IEEE Transactions on Image Processing.

[22]  Jakob J. van Zyl,et al.  Change detection techniques for ERS-1 SAR data , 1993, IEEE Trans. Geosci. Remote. Sens..

[23]  Heesung Kwon,et al.  Change detection methods for identification of mines in synthetic aperture radar imagery , 2007 .

[24]  Pierre Lanchantin,et al.  Unsupervised restoration of hidden nonstationary Markov chains using evidential priors , 2005, IEEE Transactions on Signal Processing.

[25]  Wojciech Pieczynski,et al.  Estimation of Generalized Multisensor Hidden Markov Chains and Unsupervised Image Segmentation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[27]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[28]  Jin H. Kim,et al.  Nonstationary hidden Markov model , 1995, Signal Process..

[29]  Pramod K. Varshney,et al.  An image change detection algorithm based on Markov random field models , 2002, IEEE Trans. Geosci. Remote. Sens..

[30]  Farid Melgani,et al.  Robust Unsupervised Change Detection with Markov Random Fields , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[31]  Gregoire Mercier,et al.  Unsupervised change detection in SAR images using a multicomponent HMC model , 2003 .

[32]  Jordi Inglada,et al.  A New Statistical Similarity Measure for Change Detection in Multitemporal SAR Images and Its Extension to Multiscale Change Analysis , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Wladyslaw Skarbek,et al.  Generalized Hilbert scan in image printing , 1992, Theoretical Foundations of Computer Vision.

[34]  Pierre A. Devijver,et al.  Baum's forward-backward algorithm revisited , 1985, Pattern Recognit. Lett..