Some properties of maximum length cellular automaton sequences
暂无分享,去创建一个
Taejoo Chang | Yun Hee Kim | Y. Kim | Min Joon Lee | Iichko Song | Taejoo Chang | M. Lee | I. Song
[1] Parimal Pal Chaudhuri,et al. Theory and Applications of Cellular Automata in Cryptography , 1994, IEEE Trans. Computers.
[2] Howard C. Card,et al. Group Properties of Cellular Automata and VLSI Applications , 1986, IEEE Transactions on Computers.
[3] Thyagaraju R. Damarla,et al. Applications of one-dimensional cellular automata and linear feedback shift registers for pseudo-exhaustive testing , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[4] Taylor L. Booth,et al. Sequential machines and automata theory , 1967 .
[5] Stephen Wolfram,et al. Universality and complexity in cellular automata , 1983 .
[6] Iickho Song,et al. Maximum length cellular automaton sequences and its application , 1997, Signal Process..
[7] D. Michael Miller,et al. The analysis of one-dimensional linear cellular automata and their aliasing properties , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[8] S. Wolfram. Statistical mechanics of cellular automata , 1983 .
[9] Parimal Pal Chaudhuri,et al. Design of CAECC-Cellular Automata Based Error Correcting Code , 1994, IEEE Trans. Computers.
[10] P. Pal Chaudhuri,et al. Efficient characterisation of cellular automata , 1990 .
[11] Adonios Thanailakis,et al. VLSI implementation of mod-p multipliers using homomorphisms and hybrid cellular automata , 1992 .
[12] Ted G. Lewis,et al. Generalized Feedback Shift Register Pseudorandom Number Algorithm , 1973, JACM.
[13] R. Tausworthe. Random Numbers Generated by Linear Recurrence Modulo Two , 1965 .