Some properties of maximum length cellular automaton sequences

In this paper, we consider two dimensional maximum length cellular automaton (CA) sequences, which are an extension of the one dimensional ones. Two dimensional sequences are also equivalent to linear feedback shift register sequences. We rearrange the two dimensional cells to the one dimensional CA, and then the procedure of the one dimensional case is applied. Some configurations of the two dimensional maximum length CA are found. As an application of the two dimensional CA sequence, a pseudorandom number generator is considered.

[1]  Parimal Pal Chaudhuri,et al.  Theory and Applications of Cellular Automata in Cryptography , 1994, IEEE Trans. Computers.

[2]  Howard C. Card,et al.  Group Properties of Cellular Automata and VLSI Applications , 1986, IEEE Transactions on Computers.

[3]  Thyagaraju R. Damarla,et al.  Applications of one-dimensional cellular automata and linear feedback shift registers for pseudo-exhaustive testing , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[4]  Taylor L. Booth,et al.  Sequential machines and automata theory , 1967 .

[5]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[6]  Iickho Song,et al.  Maximum length cellular automaton sequences and its application , 1997, Signal Process..

[7]  D. Michael Miller,et al.  The analysis of one-dimensional linear cellular automata and their aliasing properties , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[8]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[9]  Parimal Pal Chaudhuri,et al.  Design of CAECC-Cellular Automata Based Error Correcting Code , 1994, IEEE Trans. Computers.

[10]  P. Pal Chaudhuri,et al.  Efficient characterisation of cellular automata , 1990 .

[11]  Adonios Thanailakis,et al.  VLSI implementation of mod-p multipliers using homomorphisms and hybrid cellular automata , 1992 .

[12]  Ted G. Lewis,et al.  Generalized Feedback Shift Register Pseudorandom Number Algorithm , 1973, JACM.

[13]  R. Tausworthe Random Numbers Generated by Linear Recurrence Modulo Two , 1965 .