Numerical product design: Springback prediction, compensation and optimization

Numerical simulations are being deployed widely for product design. However, the accuracy of the numerical tools is not yet always sufficiently accurate and reliable. This article focuses on the current state and recent developments in different stages of product design: springback prediction, springback compensation and optimization by finite element (FE) analysis. To improve the springback prediction by FE analysis, guidelines regarding the mesh discretization are provided and a new through-thickness integration scheme for shell elements is launched. In the next stage of virtual product design the product is compensated for springback. Currently, deformations due to springback are manually compensated in the industry. Here, a procedure to automatically compensate the tool geometry, including the CAD description, is presented and it is successfully applied to an industrial automotive part. The last stage in virtual product design comprises optimization. This article presents an optimization scheme which is capable of designing optimal and robust metal forming processes efficiently.

[1]  J. Huetink,et al.  A Metamodel Based Optimisation Algorithm for Metal Forming Processes , 2007 .

[2]  Kai Yang,et al.  Design for Six Sigma : A Roadmap for Product Development , 2003 .

[3]  Fabrizio Micari,et al.  An integrated approach to the design of tube hydroforming processes: artificial intelligence, numerical analysis and experimental investigation , 2004 .

[4]  C. Labergere,et al.  New strategies for optimal control of command laws for tube hydroforming processes , 2004 .

[5]  Catarina F. Castro,et al.  Optimization of metal forming processes , 2004 .

[6]  Thomas Bäck,et al.  Metamodel-Assisted Evolution Strategies , 2002, PPSN.

[7]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[8]  Eiji Nakamachi,et al.  Development of optimum process design system for sheet fabrication using response surface method , 2003 .

[9]  Panos Y. Papalambros,et al.  Principles of Optimal Design: Author Index , 2000 .

[10]  Jean-Philippe Ponthot,et al.  Parameter identification and shape/process optimization in metal forming simulation , 2003 .

[11]  John R. Rice,et al.  A Metalgorithm for Adaptive Quadrature , 1975, JACM.

[12]  Kai Yang,et al.  Design for Six Sigma , 2005 .

[13]  A. Ghosh,et al.  Inelastic effects on springback in metals , 2002 .

[14]  J. Huetink,et al.  The development of a finite elements based springback compensation tool for sheet metal products , 2005 .

[15]  R. H. Myers,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[16]  R. H. Wagoner,et al.  Practical Methods for the Design of Sheet Formed Components , 2004 .

[17]  Olaf Schenk,et al.  Optimal design of metal forming die surfaces with evolution strategies , 2004 .

[18]  T. Belytschko,et al.  Adaptive multi-point quadrature for elastic-plastic shell elements , 1998 .

[19]  Luigi Carrino,et al.  A posteriori optimisation of the forming pressure in superplastic forming processes by the finite element method , 2003 .

[20]  Ramana V. Grandhi,et al.  Optimum Design of Forging Process Parameters and Preform Shape under Uncertainties , 2004 .

[21]  Jean-Pascal Kleinermann,et al.  Optimisation methods for initial/tool shape optimisation in metal forming processes , 2005 .

[22]  Soo-Ik Oh,et al.  Design sensitivity analysis and optimization of the hydroforming process , 2001 .

[23]  R. A. Lingbeek,et al.  Springback Compensation: Fundamental Topics and Practical Application , 2006 .

[24]  J. Huetink,et al.  Solving optimisation problems in metal forming using Finite Element simulation and metamodelling techniques , 2005 .

[25]  Taylan Altan,et al.  Optimization of blank dimensions to reduce springback in the flexforming process , 2004 .

[26]  Tomas Jansson,et al.  Optimization of sheet metal forming processes , 2005 .

[27]  Jean-Louis Batoz,et al.  OPTIMIZATION AND CONTROL OF THE BLANKHOLDER FORCE IN SHEET METAL STAMPING WITH APPLICATION TO DEEP DRAWING OF A CYLINDRICAL CUP , 2004 .

[28]  Yong H. Kim,et al.  Optimal design of superplastic forming processes , 2001 .

[29]  Xiaoxiang Shi,et al.  A new approach of die shape optimization for sheet metal forming processes , 2004 .

[30]  Luigi Carrino,et al.  On the optimisation of superplastic forming processes by the finite-element method , 2003 .

[31]  R. H. Wagoner,et al.  DIE DESIGN METHOD FOR SHEET SPRINGBACK , 2004 .

[32]  T. T. Do,et al.  Sensitivity Analysis and Optimization Algorithms for 3D Forging Process Design , 2004 .

[33]  V. T. Meinders,et al.  A sensitivity analysis on the springback behavior of the Unconstrained Bending Problem , 2005 .

[34]  W. Sosnowski,et al.  Sensitivity based optimization of sheet metal forming tools , 2002 .

[35]  A. Lejeune,et al.  CONTROL OF DAMAGE IN FLANGES HYDROFORMING , 2004 .

[36]  Taylan Altan,et al.  Adaptive FEM simulation for prediction of variable blank holder force in conical cup drawing , 2004 .

[37]  Hakim Naceur,et al.  Response Surface Methodology for the Design of Sheet Metal Forming Parameters to Control Springback Effects using the Inverse Approach , 2004 .

[38]  Muhammad Kashif,et al.  Optimization of Sheet Metal Forming Process , 2010 .

[39]  Ramana V. Grandhi,et al.  3‐D Preform Shape Optimization In Metal Forming , 2004 .

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  Taylan Altan,et al.  The use of FEA and design of experiments to establish design guidelines for simple hydroformed parts , 2000 .

[42]  Naeem Zafar,et al.  Optimization of a Tube Hydroforming Process , 2004 .

[43]  Kuang-Jau Fann,et al.  Optimization of loading conditions for tube hydroforming , 2003 .

[44]  Antonius H. van den Boogaard,et al.  Optimising towards robust metal forming processes , 2006 .

[45]  Luísa Costa Sousa,et al.  Optimisation of shape and process parameters in metal forging using genetic algorithms , 2004 .

[46]  Ramana V. Grandhi,et al.  Studies on optimization of metal forming processes using sensitivity analysis methods , 2004 .

[47]  Zou Lin,et al.  Optimization of die profile for improving die life in the hot extrusion process , 2003 .

[48]  J. Huetink,et al.  Metamodelling techniques for the optimisation of metal forming processes , 2005 .

[49]  Robert H. Wagoner,et al.  Advances in Springback , 2005 .

[50]  X Duan,et al.  Shape optimisation using FEA software: a V-shaped anvil as an example , 2002 .

[51]  Suwat Jirathearanat,et al.  Optimization of Loading Paths for Tube Hydroforming , 2004 .

[52]  K. Debray,et al.  Optimum Design Of Addendum Surfaces In Sheet Metal Forming Process , 2004 .

[53]  Jean-Louis Batoz,et al.  Optimization Of The Blankholder Force With Application To The Numisheet’02 Deep Drawing Benchmark Test B1 , 2004 .

[54]  W. H. Sillekens,et al.  Hydroforming Processes for Tubular Parts. Optimisation by Means of Adaptive and Iterative FEM Simulation , 2001 .

[55]  Wei Chen,et al.  Sequential Optimization and Reliability Assessment Method for Metal Forming Processes , 2004 .

[56]  Karl Brian Nielsen,et al.  Least-Square Formulation of the Object Function, applied on Hydro Mechanical Tube Forming , 2001 .

[57]  Matteo Strano,et al.  Adaptive Selection of Loads During FEM Simulation of Sheet Forming Processes , 2004 .

[58]  Hakim Naceur,et al.  SOME IMPROVEMENTS ON THE OPTIMUM PROCESS DESIGN IN DEEP DRAWING USING THE INVERSE APPROACH , 2004 .

[59]  R. H. Wagoner,et al.  Simulation of springback , 2002 .

[60]  Jian Cao,et al.  Analysis of an axisymmetric deep-drawn part forming using reduced forming steps , 2001 .

[61]  Tapabrata Ray,et al.  Optimal process design of sheet metal forming for minimum springback via an integrated neural network evolutionary algorithm , 2004 .

[62]  P. Villon,et al.  Moving least squares response surface approximation: Formulation and metal forming applications , 2005 .

[63]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[64]  Ba Nghiep Nguyen,et al.  A Numerical Process Control Method for Circular-Tube Hydroforming Prediction , 2004 .

[65]  A. H. van den Boogaard,et al.  An optimisation strategy for industrial metal forming processes , 2008 .

[66]  B. J. Mac Donald,et al.  Determination of the optimal load path for tube hydroforming processes using a fuzzy load control algorithm and finite element analysis , 2004 .

[67]  Nielen Stander,et al.  An Optimization Procedure For Springback Compensation Using LS-OPT , 2002 .

[68]  S. M Byon,et al.  FEM-based process optimal design in steady-state metal forming considering strain-hardening , 2001 .

[69]  Kyung K. Choi,et al.  Die shape design optimization of sheet metal stamping process using meshfree method , 2001 .

[70]  Soo-Ik Oh,et al.  A four-node shell element with enhanced bending performance for springback analysis , 2004 .

[71]  Hakim Naceur,et al.  Optimization of drawbead restraining forces and drawbead design in sheet metal forming process , 2001 .

[72]  Tomas Jansson,et al.  Optimization of Draw-In for an Automotive Sheet Metal Part An evaluation using surrogate models and response surfaces , 2005 .

[73]  Mgd Marc Geers,et al.  An adaptive simulation approach designed for tube hydroforming processes , 2005 .

[74]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[75]  H. S. Levine,et al.  Finite element analysis of structures in the plastic range , 1971 .