A new computational approach for determining rate regions and optimal codes for coded networks
暂无分享,去创建一个
[1] Ryan Kinser,et al. New inequalities for subspace arrangements , 2009, J. Comb. Theory, Ser. A.
[2] Rohan Kapadia,et al. Representation of matroids with a modular plane , 2013 .
[3] James G. Oxley,et al. Matroid theory , 1992 .
[4] Randall Dougherty,et al. Linear rank inequalities on five or more variables , 2009, ArXiv.
[5] Komei Fukuda,et al. Double Description Method Revisited , 1995, Combinatorics and Computer Science.
[6] James Richard Roche. Distributed information storage , 1992 .
[7] Raymond W. Yeung,et al. Multilevel diversity coding with distortion , 1995, IEEE Trans. Inf. Theory.
[8] Zhen Zhang,et al. Distributed Source Coding for Satellite Communications , 1999, IEEE Trans. Inf. Theory.
[9] Frantisek Matús,et al. Infinitely Many Information Inequalities , 2007, 2007 IEEE International Symposium on Information Theory.
[10] G. Ziegler. Lectures on Polytopes , 1994 .
[11] E. Todeva. Networks , 2007 .
[12] Nikolai K. Vereshchagin,et al. Inequalities for Shannon Entropy and Kolmogorov Complexity , 1997, J. Comput. Syst. Sci..
[13] Randall Dougherty,et al. Networks, Matroids, and Non-Shannon Information Inequalities , 2007, IEEE Transactions on Information Theory.
[14] H. Raiffa,et al. 3. The Double Description Method , 1953 .
[15] Steven P. Weber,et al. A computational approach for determining rate regions and codes using entropic vector bounds , 2012, 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[16] Gordon F. Royle,et al. Matroids with nine elements , 2008, J. Comb. Theory, Ser. B.
[17] Raymond W. Yeung,et al. Information Theory and Network Coding , 2008 .