The distillability problem revisited

An important open problem in quantum information theory is the question of the existence of NPT bound entanglement. In the past years, little progress has been made, mainly because of the lack of mathematical tools to address the problem. (i) In an attempt to overcome this, we show how the distillability problem can be reformulated as a special instance of the separability problem, for which a large number of tools and techniques are available. (ii) Building up to this we also show how the problem can be formulated as a Schmidt number problem. (iii) A numerical method for detecting distillability is presented and strong evidence is given that all 1-copy undistillable Werner states are also 4-copy undistillable. (iv) The same method is used to estimate the volume of distillable states, and the results suggest that bound entanglement is primarily a phenomenon found in low dimensional quantum systems. (v) Finally, a set of one parameter states is presented which we conjecture to exhibit all forms of distillability.

[1]  L. Clarisse Characterization of distillability of entanglement in terms of positive maps , 2004, quant-ph/0403073.

[2]  J. Cirac,et al.  Irreversibility in asymptotic manipulations of entanglement. , 2001, Physical review letters.

[3]  M. Wolf,et al.  Irreversibility of entanglement distillation for a class of symmetric states , 2004 .

[4]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[5]  E. Rains Bound on distillable entanglement , 1998, quant-ph/9809082.

[6]  J. Eisert,et al.  Complete hierarchies of efficient approximations to problems in entanglement theory , 2004 .

[7]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[8]  A. Edelman,et al.  Random matrix theory , 2005, Acta Numerica.

[9]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[10]  L. Masanes All bipartite entangled states are useful for information processing. , 2005, Physical review letters.

[11]  Michal Horodecki,et al.  Entanglement measures , 2001, Quantum Inf. Comput..

[12]  P. Shor,et al.  Nonadditivity of bipartite distillable entanglement follows from a conjecture on bound entangled Werner states. , 2000, Physical review letters.

[13]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[14]  J. Watrous On the number of copies required for entanglement distillation , 2003 .

[15]  J. Cirac,et al.  Distillability and partial transposition in bipartite systems , 1999, quant-ph/9910022.

[16]  Wolfgang Dür,et al.  Entanglement cost of antisymmetric states , 2001 .

[17]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[18]  Barbara M. Terhal Detecting quantum entanglement , 2002, Theor. Comput. Sci..

[19]  R. Werner,et al.  Some Open Problems in Quantum Information Theory , 2005, quant-ph/0504166.

[20]  M. Horodecki,et al.  Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments , 2002 .

[21]  A. Winter,et al.  Aspects of Generic Entanglement , 2004, quant-ph/0407049.

[22]  J. Cirac,et al.  Entangling operations and their implementation using a small amount of entanglement. , 2000, Physical review letters.

[23]  K. Życzkowski,et al.  Random unitary matrices , 1994 .

[24]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[25]  M. Horodecki,et al.  Inseparable Two Spin- 1 2 Density Matrices Can Be Distilled to a Singlet Form , 1997 .

[26]  R. Werner,et al.  Entanglement measures under symmetry , 2000, quant-ph/0010095.

[27]  P. Parrilo,et al.  Distinguishing separable and entangled states. , 2001, Physical review letters.

[28]  Ashish V. Thapliyal,et al.  Evidence for bound entangled states with negative partial transpose , 1999, quant-ph/9910026.

[29]  G. Stewart The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .

[30]  P. Parrilo,et al.  Complete family of separability criteria , 2003, quant-ph/0308032.

[31]  M. Horodecki,et al.  Irreversibility for all bound entangled states. , 2005, Physical Review Letters.

[32]  Dagmar Bruß,et al.  Simplifying schmidt number witnesses via higher-dimensional embeddings , 2004, Quantum Inf. Comput..

[33]  S. Ishizaka 15aTF-11 Bound entangled states provide overall convertibility of pure entangled states , 2004 .

[34]  J. Cirac,et al.  Bound Entanglement for Continuous Variables is a Rare Phenomenon , 2001, quant-ph/0103076.

[35]  D. Bruß,et al.  A two-way algorithm for the entanglement problem , 2004, quant-ph/0407179.

[36]  K. Życzkowski On the volume of the set of mixed entangled states II , 1999, quant-ph/9902050.

[37]  M. Wolf,et al.  Activating distillation with an infinitesimal amount of bound entanglement. , 2002, Physical review letters.

[38]  M. Lewenstein,et al.  Schmidt number witnesses and bound entanglement , 2000, quant-ph/0009109.

[39]  J. Eisert,et al.  On the quantification of entanglement in infinite-dimensional quantum systems , 2001, quant-ph/0112064.

[40]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[41]  M. Horodecki,et al.  Limits for entanglement measures. , 1999, Physical review letters.

[42]  J. Cirac,et al.  Characterization of distillable and activatable states using entanglement witnesses , 2001, quant-ph/0110174.

[43]  P. Horodecki,et al.  Schmidt number for density matrices , 1999, quant-ph/9911117.

[44]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[45]  M. Wolf,et al.  Distillability via protocols respecting the positivity of partial transpose. , 2001, Physical review letters.

[46]  K. Życzkowski,et al.  Composed ensembles of random unitary matrices , 1997, chao-dyn/9707006.

[47]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[48]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.