Electrical characterization of epitaxial silicon films formed by a low kinetic energy particle process

Electrical properties of epitaxial silicon layers formed at very low temperatures of 320–350 °C by a low kinetic energy particle process are presented. Dopant impurities in the target material are substitutionally incorporated into the epitaxially grown layer, thus being electrically activated without any additional heat cycles. An epitaxial silicon layer having a resistivity as low as 0.0018 Ω cm has been obtained using a heavily arsenic‐doped silicon target. A p‐n junction diode formed by directly depositing an n‐type epilayer on a p‐type substrate exhibits a reverse current level as low as 1.88×10−9 A/cm2 at a reverse‐bias voltage of 5 V. The electrical properties of the grown film have shown a good correlation to the crystallinity of the film, which changes depending upon the ion bombardment energy.