Evolution and Bio-Inspired Design: Natural Limitations

[1]  Martha E. Grady,et al.  Autonomic Restoration of Electrical Conductivity , 2012, Advanced materials.

[2]  K. H. Low Current and future trends of biologically inspired underwater vehicles , 2011, 2011 Defense Science Research Conference and Expo (DSR).

[3]  Yoseph Bar-Cohen,et al.  Biomimetics: Nature-Based Innovation , 2011 .

[4]  Peter A. Dewey,et al.  Bioinspired Propulsion Mechanisms Based on Manta Ray Locomotion , 2011 .

[5]  Keith Moored,et al.  Batoid Fishes: Inspiration for the Next Generation of Underwater Robots , 2011 .

[6]  Frank E. Fish,et al.  Turning performance of batoids: Limitations of a rigid body , 2011 .

[7]  Elizabeth Pennisi Bio-inspired engineering. Manta machines. , 2011, Science.

[8]  Alan McFadzean,et al.  Engineering Animals: How Life Works , 2011 .

[9]  Derk Joester,et al.  Nanoscale chemical tomography of buried organic–inorganic interfaces in the chiton tooth , 2011, Nature.

[10]  Chunlin Zhou,et al.  Better Endurance and Load Capacity: An Improved Design of Manta Ray Robot (RoMan-II) , 2010 .

[11]  Shusheng Bi,et al.  Design and Experiments of a Robotic Fish Imitating Cow-Nosed Ray , 2010 .

[12]  S. Kuratani Modularity, comparative embryology and evo-devo: developmental dissection of evolving body plans. , 2009, Developmental biology.

[13]  Jing Qiu,et al.  Kinematics Modeling and Experiments of Pectoral Oscillation Propulsion Robotic Fish , 2009 .

[14]  Geoffrey Swain,et al.  Bioinspiration—the solution for biofouling control? , 2009, Bioinspiration & biomimetics.

[15]  Jun Gao,et al.  Development and design of a robotic manta ray featuring flexible pectoral fins , 2007, 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[16]  Koichi Suzumori,et al.  A Bending Pneumatic Rubber Actuator Realizing Soft-bodied Manta Swimming Robot , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[17]  Rhodri H. Armour,et al.  Rolling in nature and robotics: A review , 2006 .

[18]  Kinji Asaka,et al.  Development of a Rajiform Swimming Robot using Ionic Polymer Artificial Muscles , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[19]  Casper J Breuker,et al.  Functional evo-devo. , 2006, Trends in ecology & evolution.

[20]  Richard H. C. Bonser,et al.  Patented Biologically-inspired technological innovations: A twenty year view , 2006 .

[21]  G. Lauder,et al.  Passive and Active Flow Control by Swimming Fishes and Mammals , 2006 .

[22]  Frank E. Fish,et al.  Limits of nature and advances of technology: What does biomimetics have to offer to aquatic robots? , 2006 .

[23]  Shuguang Zhang,et al.  Molecular Design of Biological and Nano-Materials , 2005 .

[24]  Constantinos Mavroidis,et al.  Bio-Nanorobotics: A Field Inspired by Nature , 2005 .

[25]  Yoseph Bar-Cohen,et al.  Biomimetics : Biologically Inspired Technologies , 2011 .

[26]  P.R. Bandyopadhyay,et al.  Trends in biorobotic autonomous undersea vehicles , 2005, IEEE Journal of Oceanic Engineering.

[27]  Adam P. Summers,et al.  Batoid wing skeletal structure: Novel morphologies, mechanical implications, and phylogenetic patterns , 2005, Journal of morphology.

[28]  K.M. Lynch,et al.  Mechanics and control of swimming: a review , 2004, IEEE Journal of Oceanic Engineering.

[29]  F. Fish,et al.  Strouhal numbers and optimization of swimming by odontocete cetaceans , 2004, Journal of Experimental Biology.

[30]  N. R. Chapman,et al.  Guest Editorial Special Issue on Geoacoustic Inversion in Range-Dependent Environments—Part II , 2004 .

[31]  Lu Yongxiang,et al.  Significance and Progress of Bionics , 2004 .

[32]  Scott F Gilbert,et al.  The morphogenesis of evolutionary developmental biology. , 2003, The International journal of developmental biology.

[33]  J. M. Bush,et al.  The hydrodynamics of water strider locomotion , 2003, Nature.

[34]  Elizabeth L. Mann,et al.  Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Stanhope,et al.  Molecular phylogenetic evidence refuting the hypothesis of Batoidea (rays and skates) as derived sharks. , 2003, Molecular Phylogenetics and Evolution.

[36]  Joel L. Davis,et al.  Neurotechnology for Biomimetic Robots , 2002 .

[37]  W. Arthur,et al.  The emerging conceptual framework of evolutionary developmental biology , 2002, Nature.

[38]  L. Rosenberger,et al.  Pectoral fin locomotion in batoid fishes: undulation versus oscillation. , 2001, The Journal of experimental biology.

[39]  C. Luer,et al.  The Amphibians of the Former Soviet Union , 2000, Copeia.

[40]  M. Triantafyllou,et al.  Hydrodynamics of Fishlike Swimming , 2000 .

[41]  Steven Vogel,et al.  Life's Devices , 2020 .

[42]  Hans Lambers,et al.  Plant Physiological Ecology , 2000, Springer New York.

[43]  S. Vogel,et al.  Life in Moving Fluids , 2020 .

[44]  Neil Bose,et al.  Propulsive performance from oscillating propulsors with spanwise flexibility , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  T. Tricas,et al.  Sharks and Rays , 1997 .

[46]  Dorion Sagan,et al.  What Is Sex , 1997 .

[47]  Janine M. Benyus,et al.  Biomimicry: Innovation Inspired by Nature , 1997 .

[48]  Michael Fisher,et al.  Invention by design , 1996 .

[49]  M. Triantafyllou,et al.  An Efficient Swimming Machine , 1995 .

[50]  Henry Petroski,et al.  The Evolution of Useful Things , 1992, Symposium on Designing Interactive Systems.

[51]  Neil Bose Performance of chordwise flexible oscillating propulsors using a time-domain panel method , 1995 .

[52]  Darrell Whitley,et al.  A genetic algorithm tutorial , 1994, Statistics and Computing.

[53]  John R. Koza,et al.  Genetic programming as a means for programming computers by natural selection , 1994 .

[54]  Mary Wong,et al.  Locomotion like a wheel? , 1993, Nature.

[55]  M. Triantafyllou,et al.  Optimal Thrust Development in Oscillating Foils with Application to Fish Propulsion , 1993 .

[56]  Neil Bose,et al.  Propulsive performance of three naturally occurring oscillating propeller planforms , 1993 .

[57]  F. Fish,et al.  Dolphin swimming–a review , 1991 .

[58]  Brian D. Clark,et al.  Hydrodynamics of the Feet of Fish-Catching Bats: Influence of the Water Surface on Drag and Morphological Design , 1991 .

[59]  Peter L. Jakab Visions of a flying machine , 1990 .

[60]  Jon Lien,et al.  Propulsion of a fin whale ( Balenoptera physalus) : why the fin whale is a fast swimmer , 1989, Proceedings of the Royal Society of London. B. Biological Sciences.

[61]  S. Wainwright Axis and Circumference: The Cylindrical Shape of Plants and Animals , 1988 .

[62]  R. M. Alexander,et al.  Elastic mechanisms in animal movement , 1988 .

[63]  R. O'dor,et al.  The constraints on cephalopods: why squid aren't fish , 1986 .

[64]  Stephen Jay Gould,et al.  A view of life , 1981 .

[65]  E. Eugene Larrabee The screw propeller , 1980 .

[66]  Joseph Katz,et al.  Large amplitude unsteady motion of a flexible slender propulsor , 1979, Journal of Fluid Mechanics.

[67]  Joseph Katz,et al.  Hydrodynamic propulsion by large amplitude oscillation of an airfoil with chordwise flexibility , 1978, Journal of Fluid Mechanics.

[68]  R. McNeill Alexander,et al.  Mechanics and energetics of animal locomotion , 1977 .

[69]  Stephen A. Wainwright,et al.  Mechanical Design in Organisms , 2020 .

[70]  P. Webb Hydrodynamics and Energetics of Fish Propulsion , 1975 .

[71]  L. V. Valen,et al.  A new evolutionary law , 1973 .

[72]  I. H. Abbott,et al.  Theory of Wing Sections , 1959 .

[73]  C. Breder The locomotion of fishes , 1926 .