Overestimation of heterotrophic bacteria in the Sargasso Sea: direct evidence by flow and imaging cytometry

[1]  Daniel Vaulot,et al.  The importance of Prochlorococcus to community structure in the central North Pacific Ocean , 1994 .

[2]  R. Goericke,et al.  The marine prochlorophyte Prochlorococcus contributes significantly to phytoplankton biomass and primary production in the Sargasso Sea , 1993 .

[3]  E. Sherr,et al.  DAPI direct counting underestimates bacterial abundances and average cell size compared to AO direct counting , 1993 .

[4]  H. Claustre,et al.  Prochlorococcus and Synechococcus: A comparative study of their optical properties in relation to their size and pigmentation , 1993 .

[5]  B. Monger,et al.  Flow Cytometric Analysis of Marine Bacteria with Hoechst 33342 , 1993, Applied and environmental microbiology.

[6]  T. Maruyama,et al.  Spatial mesoscale patterns of West Pacific picophytoplankton as analyzed by flow cytometry: their contribution to subsurface chlorophyll maxima , 1993 .

[7]  B. Irwin,et al.  The western North Atlantic bloom experiment , 1993 .

[8]  M. Sieracki,et al.  Plankton community response to sequential silicate and nitrate depletion during the 1989 North Atlantic spring bloom , 1993 .

[9]  M. Sieracki,et al.  Distributions and fluorochrome-staining properties of submicrometer particles and bacteria in the North Atlantic , 1992 .

[10]  D. Vaulot,et al.  Cell cycle distributions of prochlorophytes in the north western Mediterranean Sea , 1992 .

[11]  A. Wood,et al.  Biomass of bacteria, cyanobacteria, prochlorophytes and photosynthetic eukaryotes in the Sargasso Sea , 1992 .

[12]  M. Sieracki,et al.  Measurement of marine picoplankton cell size by using a cooled, charge-coupled device camera with image-analyzed fluorescence microscopy , 1992, Applied and environmental microbiology.

[13]  R. Olson,et al.  Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean , 1990 .

[14]  T. Nagata,et al.  Carbon- and Nitrogen-to-Volume Ratios of Bacterioplankton Grown under Different Nutritional Conditions , 1990, Applied and environmental microbiology.

[15]  M. Sieracki,et al.  Algorithm to estimate cell biovolume using image analyzed microscopy. , 1989, Cytometry.

[16]  M. Perry,et al.  Closing the microbial loop: dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion and absorption in animals , 1989 .

[17]  D. Vaulot,et al.  Green photosynthetic bacteria associated with the deep chlorophyll maximum of the Sargasso sea , 1989 .

[18]  J. Fuhrman,et al.  Dominance of bacterial biomass in the Sargasso Sea and its ecological implications , 1989 .

[19]  A. Wood,et al.  Vertical distribution of North Atlantic ultraphytoplankton: analysis by flow cytometry and epifluorescence microscopy , 1988 .

[20]  Sallie W. Chisholm,et al.  A novel free-living prochlorophyte abundant in the oceanic euphotic zone , 1988, Nature.

[21]  Farooq Azam,et al.  Major role of bacteria in biogeochemical fluxes in the ocean's interior , 1988, Nature.

[22]  Peter Koefoed Bjørrisen Phytoplankton exudation of organic matter: Why do healthy cells do it?1 , 1988 .

[23]  B. Austin Methods in aquatic bacteriology , 1988 .

[24]  F. Mackenzie,et al.  The ocean as a net heterotrophic system: Implications From the carbon biogeochemical cycle , 1987 .

[25]  P. Holligan,et al.  Vertical distribution and partitioning of organic carbon in mixed frontal and stratified waters of the English Channel , 1984 .

[26]  J. G. Field,et al.  The Ecological Role of Water-Column Microbes in the Sea* , 1983 .