Uncertainty Quantification for Low-Frequency, Time-Harmonic Maxwell Equations with Stochastic Conductivity Models

We consider an uncertainty quantification (UQ) problem for the low-frequency, time-harmonic Maxwell equations with conductivity that is modeled by a fixed layer and a lognormal random field layer. We formulate and prove the well-posedness of the stochastic and the parametric problem, the latter obtained using a Karhunen--Loeve expansion for the random field with covariance function belonging to the anisotropic Whittle--Matern class. For the approximation of the infinite-dimensional integrals in the forward UQ problem, we employ the sparse quadrature (SQ) method and we prove dimension-independent convergence rates for this model. These rates depend on the sparsity of the parametric representation for the random field and can exceed the convergence rate of the Monte Carlo method, thus enabling a computationally tractable calculation for quantities of interest. To further reduce the computational cost involved in large-scale models, such as those occurring in the controlled-source electromagnetic method, thi...

[1]  Albert Cohen,et al.  Approximation of high-dimensional parametric PDEs * , 2015, Acta Numerica.

[2]  Peng Chen,et al.  Sparse-grid, reduced-basis Bayesian inversion , 2015 .

[3]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[4]  A. M. Stuart,et al.  Sparse deterministic approximation of Bayesian inverse problems , 2011, 1103.4522.

[5]  Frances Y. Kuo,et al.  Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications , 2011, J. Comput. Phys..

[6]  Albert Cohen,et al.  High-Dimensional Adaptive Sparse Polynomial Interpolation and Applications to Parametric PDEs , 2013, Foundations of Computational Mathematics.

[7]  A. Patera,et al.  A Successive Constraint Linear Optimization Method for Lower Bounds of Parametric Coercivity and Inf-Sup Stability Constants , 2007 .

[8]  Raul Tempone,et al.  An Adaptive Sparse Grid Algorithm for Elliptic PDEs with Lognormal Diffusion Coefficient , 2016 .

[9]  Oliver G. Ernst,et al.  Convergence of Sparse Collocation for Functions of Countably Many Gaussian Random Variables (with Application to Elliptic PDEs) , 2016, SIAM J. Numer. Anal..

[10]  Albert Cohen,et al.  Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients , 2015, 1509.07050.

[11]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[12]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[13]  John M. Stockie,et al.  On regularizations of the Dirac delta distribution , 2014, J. Comput. Phys..

[14]  Benjamin Stamm,et al.  Certified Reduced Basis Method for the Electric Field Integral Equation , 2012, SIAM J. Sci. Comput..

[15]  Catherine E. Powell,et al.  An Introduction to Computational Stochastic PDEs , 2014 .

[16]  R. Tempone,et al.  Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: A Numerical Comparison , 2011 .

[17]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[18]  Ronald DeVore,et al.  The Theoretical Foundation of Reduced Basis Methods , 2014 .

[19]  Ralph C. Smith,et al.  Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .

[20]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[21]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[22]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[23]  Jan S. Hesthaven,et al.  Certified Reduced Basis Methods and Output Bounds for the Harmonic Maxwell's Equations , 2010, SIAM J. Sci. Comput..

[24]  Ronald DeVore,et al.  Greedy Algorithms for Reduced Bases in Banach Spaces , 2012, Constructive Approximation.

[25]  Guannan Zhang,et al.  Stochastic finite element methods for partial differential equations with random input data* , 2014, Acta Numerica.

[26]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[27]  Peng Chen Sparse Quadrature for High-Dimensional Integration with Gaussian Measure , 2016, 1604.08466.

[28]  Albert Cohen,et al.  Representations of Gaussian Random Fields and Approximation of Elliptic PDEs with Lognormal Coefficients , 2016, Journal of Fourier Analysis and Applications.

[29]  M. Rognes,et al.  Efficient Assembly of H(div) and H(curl) Conforming Finite Elements , 2012, 1205.3085.

[30]  C. Schwab,et al.  Sparsity in Bayesian inversion of parametric operator equations , 2013 .

[31]  Alfio Quarteroni,et al.  A new algorithm for high-dimensional uncertainty quantification based on dimension-adaptive sparse grid approximation and reduced basis methods , 2015, J. Comput. Phys..

[32]  Albert Cohen,et al.  Multivariate approximation in downward closed polynomial spaces , 2016, 1612.06690.

[33]  A. Quarteroni,et al.  Reduced Basis Methods for Partial Differential Equations: An Introduction , 2015 .

[34]  Ronald A. DeVore,et al.  Chapter 3: The Theoretical Foundation of Reduced Basis Methods , 2017 .

[35]  Karsten Urban,et al.  Reduced Basis Methods for Parameterized Partial Differential Equations with Stochastic Influences Using the Karhunen-Loève Expansion , 2013, SIAM/ASA J. Uncertain. Quantification.

[36]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[37]  A. Kirsch,et al.  The Mathematical Theory of Time-Harmonic Maxwell's Equations: Expansion-, Integral-, and Variational Methods , 2014 .

[38]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[39]  Frances Y. Kuo,et al.  High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.

[40]  A. Debussche,et al.  Weak truncation error estimates for elliptic PDEs with lognormal coefficients , 2013 .

[41]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[42]  Gianluigi Rozza,et al.  A Weighted Reduced Basis Method for Elliptic Partial Differential Equations with Random Input Data , 2013, SIAM J. Numer. Anal..

[43]  S. Constable Ten years of marine CSEM for hydrocarbon exploration , 2010 .

[44]  Albert Cohen,et al.  Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs , 2015 .

[45]  Wolfgang Dahmen HOW TO BEST SAMPLE A SOLUTION MANIFOLD , 2015 .

[46]  Michael B. Giles Multilevel Monte Carlo methods , 2015, Acta Numerica.

[47]  Jinchao Xu,et al.  OPTIMAL ERROR ESTIMATES FOR NEDELEC EDGE ELEMENTS FOR TIME-HARMONIC MAXWELL'S EQUATIONS * , 2009 .

[48]  H. Widom Asymptotic behavior of the eigenvalues of certain integral equations , 1963 .

[49]  Hölder regularity for Maxwell’s equations under minimal assumptions on the coefficients , 2016, 1604.03741.

[50]  Gianluigi Rozza,et al.  A weighted empirical interpolation method: a priori convergence analysis and applications , 2014 .

[51]  A. M. Stuart,et al.  Quasi-Monte Carlo and Multilevel Monte Carlo Methods for Computing Posterior Expectations in Elliptic Inverse Problems , 2016, SIAM/ASA J. Uncertain. Quantification.

[52]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[53]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[54]  Peter Benner,et al.  Uncertainty Quantification for Maxwell's Equations Using Stochastic Collocation and Model Order Reduction , 2013 .

[55]  Julia Charrier,et al.  Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..

[56]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[57]  Martin W. Hess,et al.  Fast Evaluation of Time–Harmonic Maxwell's Equations Using the Reduced Basis Method , 2013, IEEE Transactions on Microwave Theory and Techniques.

[58]  C. Schwab,et al.  Scaling limits in computational Bayesian inversion , 2014 .

[59]  Sara Grundel,et al.  Estimating the Inf-Sup Constant in Reduced Basis Methods for Time-Harmonic Maxwell’s Equations , 2015, IEEE Transactions on Microwave Theory and Techniques.

[60]  Andrea Manzoni,et al.  Heuristic strategies for the approximation of stability factors in quadratically nonlinear parametrized PDEs , 2015, Adv. Comput. Math..

[61]  Peng Chen,et al.  Sparse-grid, reduced-basis Bayesian inversion: Nonaffine-parametric nonlinear equations , 2016, J. Comput. Phys..

[62]  K. Urban,et al.  MAXWELL'S EQUATIONS FOR CONDUCTORS WITH IMPEDANCE BOUNDARY CONDITIONS: DISCONTINUOUS GALERKIN AND REDUCED BASIS METHODS , 2016 .

[63]  T. Sullivan Introduction to Uncertainty Quantification , 2015 .

[64]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[65]  R. DeVore,et al.  Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .

[66]  Reduced Basis Approximations for Maxwell’s Equations in Dispersive Media , 2017 .

[67]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[68]  Max Gunzburger,et al.  A Multilevel Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2014, SIAM/ASA J. Uncertain. Quantification.

[69]  James A. Nichols,et al.  Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.